![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsnuniex | Structured version Visualization version GIF version |
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
Ref | Expression |
---|---|
eqsnuniex | ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4923 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 = ∪ {∪ 𝐴}) | |
2 | unieq 4923 | . . . . . 6 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∪ ∅) | |
3 | uni0 4940 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2791 | . . . . 5 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∅) |
5 | 1, 4 | sylan9eq 2795 | . . . 4 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ∪ 𝐴 = ∅) |
6 | 5 | sneqd 4643 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → {∪ 𝐴} = {∅}) |
7 | 0inp0 5365 | . . . 4 ⊢ ({∪ 𝐴} = ∅ → ¬ {∪ 𝐴} = {∅}) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ¬ {∪ 𝐴} = {∅}) |
9 | 6, 8 | pm2.65da 817 | . 2 ⊢ (𝐴 = {∪ 𝐴} → ¬ {∪ 𝐴} = ∅) |
10 | snprc 4722 | . . . 4 ⊢ (¬ ∪ 𝐴 ∈ V ↔ {∪ 𝐴} = ∅) | |
11 | 10 | bicomi 224 | . . 3 ⊢ ({∪ 𝐴} = ∅ ↔ ¬ ∪ 𝐴 ∈ V) |
12 | 11 | con2bii 357 | . 2 ⊢ (∪ 𝐴 ∈ V ↔ ¬ {∪ 𝐴} = ∅) |
13 | 9, 12 | sylibr 234 | 1 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 {csn 4631 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 df-sn 4632 df-uni 4913 |
This theorem is referenced by: en1b 9064 en1uniel 9068 |
Copyright terms: Public domain | W3C validator |