MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnuniex Structured version   Visualization version   GIF version

Theorem eqsnuniex 5286
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
eqsnuniex (𝐴 = { 𝐴} → 𝐴 ∈ V)

Proof of Theorem eqsnuniex
StepHypRef Expression
1 unieq 4855 . . . . 5 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
2 unieq 4855 . . . . . 6 ({ 𝐴} = ∅ → { 𝐴} = ∅)
3 uni0 4874 . . . . . 6 ∅ = ∅
42, 3eqtrdi 2795 . . . . 5 ({ 𝐴} = ∅ → { 𝐴} = ∅)
51, 4sylan9eq 2799 . . . 4 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → 𝐴 = ∅)
65sneqd 4578 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → { 𝐴} = {∅})
7 0inp0 5284 . . . 4 ({ 𝐴} = ∅ → ¬ { 𝐴} = {∅})
87adantl 481 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → ¬ { 𝐴} = {∅})
96, 8pm2.65da 813 . 2 (𝐴 = { 𝐴} → ¬ { 𝐴} = ∅)
10 snprc 4658 . . . 4 𝐴 ∈ V ↔ { 𝐴} = ∅)
1110bicomi 223 . . 3 ({ 𝐴} = ∅ ↔ ¬ 𝐴 ∈ V)
1211con2bii 357 . 2 ( 𝐴 ∈ V ↔ ¬ { 𝐴} = ∅)
139, 12sylibr 233 1 (𝐴 = { 𝐴} → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261  {csn 4566   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-uni 4845
This theorem is referenced by:  en1b  8783  en1uniel  8788
  Copyright terms: Public domain W3C validator