Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsnuniex | Structured version Visualization version GIF version |
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
Ref | Expression |
---|---|
eqsnuniex | ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4855 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 = ∪ {∪ 𝐴}) | |
2 | unieq 4855 | . . . . . 6 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∪ ∅) | |
3 | uni0 4874 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . . . 5 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∅) |
5 | 1, 4 | sylan9eq 2799 | . . . 4 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ∪ 𝐴 = ∅) |
6 | 5 | sneqd 4578 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → {∪ 𝐴} = {∅}) |
7 | 0inp0 5284 | . . . 4 ⊢ ({∪ 𝐴} = ∅ → ¬ {∪ 𝐴} = {∅}) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ¬ {∪ 𝐴} = {∅}) |
9 | 6, 8 | pm2.65da 813 | . 2 ⊢ (𝐴 = {∪ 𝐴} → ¬ {∪ 𝐴} = ∅) |
10 | snprc 4658 | . . . 4 ⊢ (¬ ∪ 𝐴 ∈ V ↔ {∪ 𝐴} = ∅) | |
11 | 10 | bicomi 223 | . . 3 ⊢ ({∪ 𝐴} = ∅ ↔ ¬ ∪ 𝐴 ∈ V) |
12 | 11 | con2bii 357 | . 2 ⊢ (∪ 𝐴 ∈ V ↔ ¬ {∪ 𝐴} = ∅) |
13 | 9, 12 | sylibr 233 | 1 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {csn 4566 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-uni 4845 |
This theorem is referenced by: en1b 8783 en1uniel 8788 |
Copyright terms: Public domain | W3C validator |