MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnuniex Structured version   Visualization version   GIF version

Theorem eqsnuniex 5379
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
eqsnuniex (𝐴 = { 𝐴} → 𝐴 ∈ V)

Proof of Theorem eqsnuniex
StepHypRef Expression
1 unieq 4942 . . . . 5 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
2 unieq 4942 . . . . . 6 ({ 𝐴} = ∅ → { 𝐴} = ∅)
3 uni0 4959 . . . . . 6 ∅ = ∅
42, 3eqtrdi 2796 . . . . 5 ({ 𝐴} = ∅ → { 𝐴} = ∅)
51, 4sylan9eq 2800 . . . 4 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → 𝐴 = ∅)
65sneqd 4660 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → { 𝐴} = {∅})
7 0inp0 5377 . . . 4 ({ 𝐴} = ∅ → ¬ { 𝐴} = {∅})
87adantl 481 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → ¬ { 𝐴} = {∅})
96, 8pm2.65da 816 . 2 (𝐴 = { 𝐴} → ¬ { 𝐴} = ∅)
10 snprc 4742 . . . 4 𝐴 ∈ V ↔ { 𝐴} = ∅)
1110bicomi 224 . . 3 ({ 𝐴} = ∅ ↔ ¬ 𝐴 ∈ V)
1211con2bii 357 . 2 ( 𝐴 ∈ V ↔ ¬ { 𝐴} = ∅)
139, 12sylibr 234 1 (𝐴 = { 𝐴} → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932
This theorem is referenced by:  en1b  9088  en1uniel  9093
  Copyright terms: Public domain W3C validator