| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsnuniex | Structured version Visualization version GIF version | ||
| Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| eqsnuniex | ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4894 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 = ∪ {∪ 𝐴}) | |
| 2 | unieq 4894 | . . . . . 6 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∪ ∅) | |
| 3 | uni0 4911 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
| 4 | 2, 3 | eqtrdi 2786 | . . . . 5 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∅) |
| 5 | 1, 4 | sylan9eq 2790 | . . . 4 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ∪ 𝐴 = ∅) |
| 6 | 5 | sneqd 4613 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → {∪ 𝐴} = {∅}) |
| 7 | 0inp0 5329 | . . . 4 ⊢ ({∪ 𝐴} = ∅ → ¬ {∪ 𝐴} = {∅}) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ¬ {∪ 𝐴} = {∅}) |
| 9 | 6, 8 | pm2.65da 816 | . 2 ⊢ (𝐴 = {∪ 𝐴} → ¬ {∪ 𝐴} = ∅) |
| 10 | snprc 4693 | . . . 4 ⊢ (¬ ∪ 𝐴 ∈ V ↔ {∪ 𝐴} = ∅) | |
| 11 | 10 | bicomi 224 | . . 3 ⊢ ({∪ 𝐴} = ∅ ↔ ¬ ∪ 𝐴 ∈ V) |
| 12 | 11 | con2bii 357 | . 2 ⊢ (∪ 𝐴 ∈ V ↔ ¬ {∪ 𝐴} = ∅) |
| 13 | 9, 12 | sylibr 234 | 1 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {csn 4601 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-sn 4602 df-uni 4884 |
| This theorem is referenced by: en1b 9039 en1uniel 9043 |
| Copyright terms: Public domain | W3C validator |