Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsnuniex | Structured version Visualization version GIF version |
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
Ref | Expression |
---|---|
eqsnuniex | ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4855 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 = ∪ {∪ 𝐴}) | |
2 | unieq 4855 | . . . . . 6 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∪ ∅) | |
3 | uni0 4875 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2792 | . . . . 5 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∅) |
5 | 1, 4 | sylan9eq 2796 | . . . 4 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ∪ 𝐴 = ∅) |
6 | 5 | sneqd 4577 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → {∪ 𝐴} = {∅}) |
7 | 0inp0 5290 | . . . 4 ⊢ ({∪ 𝐴} = ∅ → ¬ {∪ 𝐴} = {∅}) | |
8 | 7 | adantl 483 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ¬ {∪ 𝐴} = {∅}) |
9 | 6, 8 | pm2.65da 815 | . 2 ⊢ (𝐴 = {∪ 𝐴} → ¬ {∪ 𝐴} = ∅) |
10 | snprc 4657 | . . . 4 ⊢ (¬ ∪ 𝐴 ∈ V ↔ {∪ 𝐴} = ∅) | |
11 | 10 | bicomi 223 | . . 3 ⊢ ({∪ 𝐴} = ∅ ↔ ¬ ∪ 𝐴 ∈ V) |
12 | 11 | con2bii 358 | . 2 ⊢ (∪ 𝐴 ∈ V ↔ ¬ {∪ 𝐴} = ∅) |
13 | 9, 12 | sylibr 233 | 1 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 {csn 4565 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 df-sn 4566 df-uni 4845 |
This theorem is referenced by: en1b 8848 en1uniel 8853 |
Copyright terms: Public domain | W3C validator |