![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsnuniex | Structured version Visualization version GIF version |
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
Ref | Expression |
---|---|
eqsnuniex | ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 = ∪ {∪ 𝐴}) | |
2 | unieq 4942 | . . . . . 6 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∪ ∅) | |
3 | uni0 4959 | . . . . . 6 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2796 | . . . . 5 ⊢ ({∪ 𝐴} = ∅ → ∪ {∪ 𝐴} = ∅) |
5 | 1, 4 | sylan9eq 2800 | . . . 4 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ∪ 𝐴 = ∅) |
6 | 5 | sneqd 4660 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → {∪ 𝐴} = {∅}) |
7 | 0inp0 5377 | . . . 4 ⊢ ({∪ 𝐴} = ∅ → ¬ {∪ 𝐴} = {∅}) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐴 = {∪ 𝐴} ∧ {∪ 𝐴} = ∅) → ¬ {∪ 𝐴} = {∅}) |
9 | 6, 8 | pm2.65da 816 | . 2 ⊢ (𝐴 = {∪ 𝐴} → ¬ {∪ 𝐴} = ∅) |
10 | snprc 4742 | . . . 4 ⊢ (¬ ∪ 𝐴 ∈ V ↔ {∪ 𝐴} = ∅) | |
11 | 10 | bicomi 224 | . . 3 ⊢ ({∪ 𝐴} = ∅ ↔ ¬ ∪ 𝐴 ∈ V) |
12 | 11 | con2bii 357 | . 2 ⊢ (∪ 𝐴 ∈ V ↔ ¬ {∪ 𝐴} = ∅) |
13 | 9, 12 | sylibr 234 | 1 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 |
This theorem is referenced by: en1b 9088 en1uniel 9093 |
Copyright terms: Public domain | W3C validator |