MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnuniex Structured version   Visualization version   GIF version

Theorem eqsnuniex 5287
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
eqsnuniex (𝐴 = { 𝐴} → 𝐴 ∈ V)

Proof of Theorem eqsnuniex
StepHypRef Expression
1 unieq 4856 . . . . 5 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
2 unieq 4856 . . . . . 6 ({ 𝐴} = ∅ → { 𝐴} = ∅)
3 uni0 4875 . . . . . 6 ∅ = ∅
42, 3eqtrdi 2796 . . . . 5 ({ 𝐴} = ∅ → { 𝐴} = ∅)
51, 4sylan9eq 2800 . . . 4 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → 𝐴 = ∅)
65sneqd 4579 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → { 𝐴} = {∅})
7 0inp0 5285 . . . 4 ({ 𝐴} = ∅ → ¬ { 𝐴} = {∅})
87adantl 482 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → ¬ { 𝐴} = {∅})
96, 8pm2.65da 814 . 2 (𝐴 = { 𝐴} → ¬ { 𝐴} = ∅)
10 snprc 4659 . . . 4 𝐴 ∈ V ↔ { 𝐴} = ∅)
1110bicomi 223 . . 3 ({ 𝐴} = ∅ ↔ ¬ 𝐴 ∈ V)
1211con2bii 358 . 2 ( 𝐴 ∈ V ↔ ¬ { 𝐴} = ∅)
139, 12sylibr 233 1 (𝐴 = { 𝐴} → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  {csn 4567   cuni 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-v 3433  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4568  df-uni 4846
This theorem is referenced by:  en1b  8788  en1uniel  8793
  Copyright terms: Public domain W3C validator