MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnuniex Structured version   Visualization version   GIF version

Theorem eqsnuniex 5237
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
eqsnuniex (𝐴 = { 𝐴} → 𝐴 ∈ V)

Proof of Theorem eqsnuniex
StepHypRef Expression
1 unieq 4816 . . . . 5 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
2 unieq 4816 . . . . . 6 ({ 𝐴} = ∅ → { 𝐴} = ∅)
3 uni0 4835 . . . . . 6 ∅ = ∅
42, 3eqtrdi 2787 . . . . 5 ({ 𝐴} = ∅ → { 𝐴} = ∅)
51, 4sylan9eq 2791 . . . 4 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → 𝐴 = ∅)
65sneqd 4539 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → { 𝐴} = {∅})
7 0inp0 5235 . . . 4 ({ 𝐴} = ∅ → ¬ { 𝐴} = {∅})
87adantl 485 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → ¬ { 𝐴} = {∅})
96, 8pm2.65da 817 . 2 (𝐴 = { 𝐴} → ¬ { 𝐴} = ∅)
10 snprc 4619 . . . 4 𝐴 ∈ V ↔ { 𝐴} = ∅)
1110bicomi 227 . . 3 ({ 𝐴} = ∅ ↔ ¬ 𝐴 ∈ V)
1211con2bii 361 . 2 ( 𝐴 ∈ V ↔ ¬ { 𝐴} = ∅)
139, 12sylibr 237 1 (𝐴 = { 𝐴} → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  c0 4223  {csn 4527   cuni 4805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528  df-uni 4806
This theorem is referenced by:  en1b  8678  en1uniel  8683
  Copyright terms: Public domain W3C validator