MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnuniex Structured version   Visualization version   GIF version

Theorem eqsnuniex 5319
Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.)
Assertion
Ref Expression
eqsnuniex (𝐴 = { 𝐴} → 𝐴 ∈ V)

Proof of Theorem eqsnuniex
StepHypRef Expression
1 unieq 4885 . . . . 5 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
2 unieq 4885 . . . . . 6 ({ 𝐴} = ∅ → { 𝐴} = ∅)
3 uni0 4902 . . . . . 6 ∅ = ∅
42, 3eqtrdi 2781 . . . . 5 ({ 𝐴} = ∅ → { 𝐴} = ∅)
51, 4sylan9eq 2785 . . . 4 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → 𝐴 = ∅)
65sneqd 4604 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → { 𝐴} = {∅})
7 0inp0 5317 . . . 4 ({ 𝐴} = ∅ → ¬ { 𝐴} = {∅})
87adantl 481 . . 3 ((𝐴 = { 𝐴} ∧ { 𝐴} = ∅) → ¬ { 𝐴} = {∅})
96, 8pm2.65da 816 . 2 (𝐴 = { 𝐴} → ¬ { 𝐴} = ∅)
10 snprc 4684 . . . 4 𝐴 ∈ V ↔ { 𝐴} = ∅)
1110bicomi 224 . . 3 ({ 𝐴} = ∅ ↔ ¬ 𝐴 ∈ V)
1211con2bii 357 . 2 ( 𝐴 ∈ V ↔ ¬ { 𝐴} = ∅)
139, 12sylibr 234 1 (𝐴 = { 𝐴} → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300  df-sn 4593  df-uni 4875
This theorem is referenced by:  en1b  8999  en1uniel  9003
  Copyright terms: Public domain W3C validator