| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidif0 | Structured version Visualization version GIF version | ||
| Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| unidif0 | ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniun 4912 | . . . 4 ⊢ ∪ ((𝐴 ∖ {∅}) ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) | |
| 2 | undif1 4458 | . . . . . 6 ⊢ ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅}) | |
| 3 | uncom 4140 | . . . . . 6 ⊢ (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴) | |
| 4 | 2, 3 | eqtr2i 2758 | . . . . 5 ⊢ ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅}) |
| 5 | 4 | unieqi 4901 | . . . 4 ⊢ ∪ ({∅} ∪ 𝐴) = ∪ ((𝐴 ∖ {∅}) ∪ {∅}) |
| 6 | 0ex 5289 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 7 | 6 | unisn 4908 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
| 8 | 7 | uneq2i 4147 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∅) |
| 9 | un0 4376 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∅) = ∪ (𝐴 ∖ {∅}) | |
| 10 | 8, 9 | eqtr2i 2758 | . . . 4 ⊢ ∪ (𝐴 ∖ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) |
| 11 | 1, 5, 10 | 3eqtr4ri 2768 | . . 3 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ ({∅} ∪ 𝐴) |
| 12 | uniun 4912 | . . 3 ⊢ ∪ ({∅} ∪ 𝐴) = (∪ {∅} ∪ ∪ 𝐴) | |
| 13 | 7 | uneq1i 4146 | . . 3 ⊢ (∪ {∅} ∪ ∪ 𝐴) = (∅ ∪ ∪ 𝐴) |
| 14 | 11, 12, 13 | 3eqtri 2761 | . 2 ⊢ ∪ (𝐴 ∖ {∅}) = (∅ ∪ ∪ 𝐴) |
| 15 | uncom 4140 | . 2 ⊢ (∅ ∪ ∪ 𝐴) = (∪ 𝐴 ∪ ∅) | |
| 16 | un0 4376 | . 2 ⊢ (∪ 𝐴 ∪ ∅) = ∪ 𝐴 | |
| 17 | 14, 15, 16 | 3eqtri 2761 | 1 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3930 ∪ cun 3931 ∅c0 4315 {csn 4608 ∪ cuni 4889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-sn 4609 df-pr 4611 df-uni 4890 |
| This theorem is referenced by: infeq5i 9659 zornn0g 10528 basdif0 22926 tgdif0 22965 omsmeas 34266 stoweidlem57 46017 |
| Copyright terms: Public domain | W3C validator |