MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif0 Structured version   Visualization version   GIF version

Theorem unidif0 5342
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
StepHypRef Expression
1 uniun 4912 . . . 4 ((𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
2 undif1 4458 . . . . . 6 ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅})
3 uncom 4140 . . . . . 6 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
42, 3eqtr2i 2758 . . . . 5 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
54unieqi 4901 . . . 4 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
6 0ex 5289 . . . . . . 7 ∅ ∈ V
76unisn 4908 . . . . . 6 {∅} = ∅
87uneq2i 4147 . . . . 5 ( (𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ ∅)
9 un0 4376 . . . . 5 ( (𝐴 ∖ {∅}) ∪ ∅) = (𝐴 ∖ {∅})
108, 9eqtr2i 2758 . . . 4 (𝐴 ∖ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
111, 5, 103eqtr4ri 2768 . . 3 (𝐴 ∖ {∅}) = ({∅} ∪ 𝐴)
12 uniun 4912 . . 3 ({∅} ∪ 𝐴) = ( {∅} ∪ 𝐴)
137uneq1i 4146 . . 3 ( {∅} ∪ 𝐴) = (∅ ∪ 𝐴)
1411, 12, 133eqtri 2761 . 2 (𝐴 ∖ {∅}) = (∅ ∪ 𝐴)
15 uncom 4140 . 2 (∅ ∪ 𝐴) = ( 𝐴 ∪ ∅)
16 un0 4376 . 2 ( 𝐴 ∪ ∅) = 𝐴
1714, 15, 163eqtri 2761 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3930  cun 3931  c0 4315  {csn 4608   cuni 4889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-sn 4609  df-pr 4611  df-uni 4890
This theorem is referenced by:  infeq5i  9659  zornn0g  10528  basdif0  22926  tgdif0  22965  omsmeas  34266  stoweidlem57  46017
  Copyright terms: Public domain W3C validator