MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif0 Structured version   Visualization version   GIF version

Theorem unidif0 5378
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
StepHypRef Expression
1 uniun 4954 . . . 4 ((𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
2 undif1 4499 . . . . . 6 ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅})
3 uncom 4181 . . . . . 6 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
42, 3eqtr2i 2769 . . . . 5 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
54unieqi 4943 . . . 4 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
6 0ex 5325 . . . . . . 7 ∅ ∈ V
76unisn 4950 . . . . . 6 {∅} = ∅
87uneq2i 4188 . . . . 5 ( (𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ ∅)
9 un0 4417 . . . . 5 ( (𝐴 ∖ {∅}) ∪ ∅) = (𝐴 ∖ {∅})
108, 9eqtr2i 2769 . . . 4 (𝐴 ∖ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
111, 5, 103eqtr4ri 2779 . . 3 (𝐴 ∖ {∅}) = ({∅} ∪ 𝐴)
12 uniun 4954 . . 3 ({∅} ∪ 𝐴) = ( {∅} ∪ 𝐴)
137uneq1i 4187 . . 3 ( {∅} ∪ 𝐴) = (∅ ∪ 𝐴)
1411, 12, 133eqtri 2772 . 2 (𝐴 ∖ {∅}) = (∅ ∪ 𝐴)
15 uncom 4181 . 2 (∅ ∪ 𝐴) = ( 𝐴 ∪ ∅)
16 un0 4417 . 2 ( 𝐴 ∪ ∅) = 𝐴
1714, 15, 163eqtri 2772 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cun 3974  c0 4352  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by:  infeq5i  9705  zornn0g  10574  basdif0  22981  tgdif0  23020  omsmeas  34288  stoweidlem57  45978
  Copyright terms: Public domain W3C validator