MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif0 Structured version   Visualization version   GIF version

Theorem unidif0 5285
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
StepHypRef Expression
1 uniun 4869 . . . 4 ((𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
2 undif1 4414 . . . . . 6 ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅})
3 uncom 4091 . . . . . 6 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
42, 3eqtr2i 2768 . . . . 5 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
54unieqi 4857 . . . 4 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
6 0ex 5234 . . . . . . 7 ∅ ∈ V
76unisn 4866 . . . . . 6 {∅} = ∅
87uneq2i 4098 . . . . 5 ( (𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ ∅)
9 un0 4329 . . . . 5 ( (𝐴 ∖ {∅}) ∪ ∅) = (𝐴 ∖ {∅})
108, 9eqtr2i 2768 . . . 4 (𝐴 ∖ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
111, 5, 103eqtr4ri 2778 . . 3 (𝐴 ∖ {∅}) = ({∅} ∪ 𝐴)
12 uniun 4869 . . 3 ({∅} ∪ 𝐴) = ( {∅} ∪ 𝐴)
137uneq1i 4097 . . 3 ( {∅} ∪ 𝐴) = (∅ ∪ 𝐴)
1411, 12, 133eqtri 2771 . 2 (𝐴 ∖ {∅}) = (∅ ∪ 𝐴)
15 uncom 4091 . 2 (∅ ∪ 𝐴) = ( 𝐴 ∪ ∅)
16 un0 4329 . 2 ( 𝐴 ∪ ∅) = 𝐴
1714, 15, 163eqtri 2771 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3888  cun 3889  c0 4261  {csn 4566   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569  df-uni 4845
This theorem is referenced by:  infeq5i  9355  zornn0g  10245  basdif0  22084  tgdif0  22123  omsmeas  32269  stoweidlem57  43552
  Copyright terms: Public domain W3C validator