![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidif0 | Structured version Visualization version GIF version |
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
unidif0 | ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniun 4935 | . . . 4 ⊢ ∪ ((𝐴 ∖ {∅}) ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) | |
2 | undif1 4482 | . . . . . 6 ⊢ ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅}) | |
3 | uncom 4168 | . . . . . 6 ⊢ (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴) | |
4 | 2, 3 | eqtr2i 2764 | . . . . 5 ⊢ ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅}) |
5 | 4 | unieqi 4924 | . . . 4 ⊢ ∪ ({∅} ∪ 𝐴) = ∪ ((𝐴 ∖ {∅}) ∪ {∅}) |
6 | 0ex 5313 | . . . . . . 7 ⊢ ∅ ∈ V | |
7 | 6 | unisn 4931 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
8 | 7 | uneq2i 4175 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∅) |
9 | un0 4400 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∅) = ∪ (𝐴 ∖ {∅}) | |
10 | 8, 9 | eqtr2i 2764 | . . . 4 ⊢ ∪ (𝐴 ∖ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) |
11 | 1, 5, 10 | 3eqtr4ri 2774 | . . 3 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ ({∅} ∪ 𝐴) |
12 | uniun 4935 | . . 3 ⊢ ∪ ({∅} ∪ 𝐴) = (∪ {∅} ∪ ∪ 𝐴) | |
13 | 7 | uneq1i 4174 | . . 3 ⊢ (∪ {∅} ∪ ∪ 𝐴) = (∅ ∪ ∪ 𝐴) |
14 | 11, 12, 13 | 3eqtri 2767 | . 2 ⊢ ∪ (𝐴 ∖ {∅}) = (∅ ∪ ∪ 𝐴) |
15 | uncom 4168 | . 2 ⊢ (∅ ∪ ∪ 𝐴) = (∪ 𝐴 ∪ ∅) | |
16 | un0 4400 | . 2 ⊢ (∪ 𝐴 ∪ ∅) = ∪ 𝐴 | |
17 | 14, 15, 16 | 3eqtri 2767 | 1 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ∪ cun 3961 ∅c0 4339 {csn 4631 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: infeq5i 9674 zornn0g 10543 basdif0 22976 tgdif0 23015 omsmeas 34305 stoweidlem57 46013 |
Copyright terms: Public domain | W3C validator |