| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidif0 | Structured version Visualization version GIF version | ||
| Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| unidif0 | ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniun 4883 | . . . 4 ⊢ ∪ ((𝐴 ∖ {∅}) ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) | |
| 2 | undif1 4425 | . . . . . 6 ⊢ ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅}) | |
| 3 | uncom 4107 | . . . . . 6 ⊢ (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴) | |
| 4 | 2, 3 | eqtr2i 2757 | . . . . 5 ⊢ ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅}) |
| 5 | 4 | unieqi 4872 | . . . 4 ⊢ ∪ ({∅} ∪ 𝐴) = ∪ ((𝐴 ∖ {∅}) ∪ {∅}) |
| 6 | 0ex 5249 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 7 | 6 | unisn 4879 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
| 8 | 7 | uneq2i 4114 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∅) |
| 9 | un0 4343 | . . . . 5 ⊢ (∪ (𝐴 ∖ {∅}) ∪ ∅) = ∪ (𝐴 ∖ {∅}) | |
| 10 | 8, 9 | eqtr2i 2757 | . . . 4 ⊢ ∪ (𝐴 ∖ {∅}) = (∪ (𝐴 ∖ {∅}) ∪ ∪ {∅}) |
| 11 | 1, 5, 10 | 3eqtr4ri 2767 | . . 3 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ ({∅} ∪ 𝐴) |
| 12 | uniun 4883 | . . 3 ⊢ ∪ ({∅} ∪ 𝐴) = (∪ {∅} ∪ ∪ 𝐴) | |
| 13 | 7 | uneq1i 4113 | . . 3 ⊢ (∪ {∅} ∪ ∪ 𝐴) = (∅ ∪ ∪ 𝐴) |
| 14 | 11, 12, 13 | 3eqtri 2760 | . 2 ⊢ ∪ (𝐴 ∖ {∅}) = (∅ ∪ ∪ 𝐴) |
| 15 | uncom 4107 | . 2 ⊢ (∅ ∪ ∪ 𝐴) = (∪ 𝐴 ∪ ∅) | |
| 16 | un0 4343 | . 2 ⊢ (∪ 𝐴 ∪ ∅) = ∪ 𝐴 | |
| 17 | 14, 15, 16 | 3eqtri 2760 | 1 ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∪ cun 3896 ∅c0 4282 {csn 4577 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4578 df-pr 4580 df-uni 4861 |
| This theorem is referenced by: infeq5i 9537 zornn0g 10407 basdif0 22888 tgdif0 22927 omsmeas 34408 stoweidlem57 46217 |
| Copyright terms: Public domain | W3C validator |