MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif0 Structured version   Visualization version   GIF version

Theorem unidif0 5366
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
StepHypRef Expression
1 uniun 4935 . . . 4 ((𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
2 undif1 4482 . . . . . 6 ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅})
3 uncom 4168 . . . . . 6 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
42, 3eqtr2i 2764 . . . . 5 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
54unieqi 4924 . . . 4 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
6 0ex 5313 . . . . . . 7 ∅ ∈ V
76unisn 4931 . . . . . 6 {∅} = ∅
87uneq2i 4175 . . . . 5 ( (𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ ∅)
9 un0 4400 . . . . 5 ( (𝐴 ∖ {∅}) ∪ ∅) = (𝐴 ∖ {∅})
108, 9eqtr2i 2764 . . . 4 (𝐴 ∖ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
111, 5, 103eqtr4ri 2774 . . 3 (𝐴 ∖ {∅}) = ({∅} ∪ 𝐴)
12 uniun 4935 . . 3 ({∅} ∪ 𝐴) = ( {∅} ∪ 𝐴)
137uneq1i 4174 . . 3 ( {∅} ∪ 𝐴) = (∅ ∪ 𝐴)
1411, 12, 133eqtri 2767 . 2 (𝐴 ∖ {∅}) = (∅ ∪ 𝐴)
15 uncom 4168 . 2 (∅ ∪ 𝐴) = ( 𝐴 ∪ ∅)
16 un0 4400 . 2 ( 𝐴 ∪ ∅) = 𝐴
1714, 15, 163eqtri 2767 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3960  cun 3961  c0 4339  {csn 4631   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913
This theorem is referenced by:  infeq5i  9674  zornn0g  10543  basdif0  22976  tgdif0  23015  omsmeas  34305  stoweidlem57  46013
  Copyright terms: Public domain W3C validator