MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif0 Structured version   Visualization version   GIF version

Theorem unidif0 5310
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
StepHypRef Expression
1 uniun 4890 . . . 4 ((𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
2 undif1 4435 . . . . . 6 ((𝐴 ∖ {∅}) ∪ {∅}) = (𝐴 ∪ {∅})
3 uncom 4117 . . . . . 6 (𝐴 ∪ {∅}) = ({∅} ∪ 𝐴)
42, 3eqtr2i 2753 . . . . 5 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
54unieqi 4879 . . . 4 ({∅} ∪ 𝐴) = ((𝐴 ∖ {∅}) ∪ {∅})
6 0ex 5257 . . . . . . 7 ∅ ∈ V
76unisn 4886 . . . . . 6 {∅} = ∅
87uneq2i 4124 . . . . 5 ( (𝐴 ∖ {∅}) ∪ {∅}) = ( (𝐴 ∖ {∅}) ∪ ∅)
9 un0 4353 . . . . 5 ( (𝐴 ∖ {∅}) ∪ ∅) = (𝐴 ∖ {∅})
108, 9eqtr2i 2753 . . . 4 (𝐴 ∖ {∅}) = ( (𝐴 ∖ {∅}) ∪ {∅})
111, 5, 103eqtr4ri 2763 . . 3 (𝐴 ∖ {∅}) = ({∅} ∪ 𝐴)
12 uniun 4890 . . 3 ({∅} ∪ 𝐴) = ( {∅} ∪ 𝐴)
137uneq1i 4123 . . 3 ( {∅} ∪ 𝐴) = (∅ ∪ 𝐴)
1411, 12, 133eqtri 2756 . 2 (𝐴 ∖ {∅}) = (∅ ∪ 𝐴)
15 uncom 4117 . 2 (∅ ∪ 𝐴) = ( 𝐴 ∪ ∅)
16 un0 4353 . 2 ( 𝐴 ∪ ∅) = 𝐴
1714, 15, 163eqtri 2756 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3908  cun 3909  c0 4292  {csn 4585   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-sn 4586  df-pr 4588  df-uni 4868
This theorem is referenced by:  infeq5i  9565  zornn0g  10434  basdif0  22816  tgdif0  22855  omsmeas  34287  stoweidlem57  46028
  Copyright terms: Public domain W3C validator