![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 4781 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2993 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 ∅c0 4339 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-nul 4340 df-sn 4632 |
This theorem is referenced by: 0inp0 5365 opthprc 5753 2dom 9069 pw2eng 9117 djuexb 9947 hashge3el3dif 14523 cat1 18151 isusp 24286 bj-1upln0 36992 clsk1indlem0 44031 mnuprdlem1 44268 mnuprdlem2 44269 |
Copyright terms: Public domain | W3C validator |