Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 4709 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2997 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2942 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: 0inp0 5276 opthprc 5642 2dom 8774 pw2eng 8818 djuexb 9598 hashge3el3dif 14128 cat1 17728 isusp 23321 bj-1upln0 35126 clsk1indlem0 41540 mnuprdlem1 41779 mnuprdlem2 41780 |
Copyright terms: Public domain | W3C validator |