MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5313
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5262 . . 3 ∅ ∈ V
21snnz 4740 . 2 {∅} ≠ ∅
32necomi 2979 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2925  c0 4296  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-nul 4297  df-sn 4590
This theorem is referenced by:  0inp0  5314  opthprc  5702  2dom  9001  pw2eng  9047  djuexb  9862  hashge3el3dif  14452  cat1  18059  isusp  24149  bj-1upln0  36997  clsk1indlem0  44030  mnuprdlem1  44261  mnuprdlem2  44262
  Copyright terms: Public domain W3C validator