| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version | ||
| Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| 0nep0 | ⊢ ∅ ≠ {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5246 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snnz 4728 | . 2 ⊢ {∅} ≠ ∅ |
| 3 | 2 | necomi 2979 | 1 ⊢ ∅ ≠ {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∅c0 4284 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-nul 4285 df-sn 4578 |
| This theorem is referenced by: 0inp0 5298 opthprc 5683 2dom 8955 pw2eng 9000 djuexb 9805 hashge3el3dif 14394 cat1 18004 isusp 24147 bj-1upln0 36983 clsk1indlem0 44014 mnuprdlem1 44245 mnuprdlem2 44246 |
| Copyright terms: Public domain | W3C validator |