MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5308
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5257 . . 3 ∅ ∈ V
21snnz 4736 . 2 {∅} ≠ ∅
32necomi 2979 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2925  c0 4292  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-nul 4293  df-sn 4586
This theorem is referenced by:  0inp0  5309  opthprc  5695  2dom  8978  pw2eng  9024  djuexb  9838  hashge3el3dif  14428  cat1  18035  isusp  24125  bj-1upln0  36970  clsk1indlem0  44003  mnuprdlem1  44234  mnuprdlem2  44235
  Copyright terms: Public domain W3C validator