MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5291
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5240 . . 3 ∅ ∈ V
21snnz 4724 . 2 {∅} ≠ ∅
32necomi 2982 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2928  c0 4278  {csn 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-nul 4279  df-sn 4572
This theorem is referenced by:  0inp0  5292  opthprc  5675  2dom  8947  pw2eng  8991  djuexb  9797  hashge3el3dif  14389  cat1  17999  isusp  24171  bj-1upln0  37043  clsk1indlem0  44074  mnuprdlem1  44305  mnuprdlem2  44306
  Copyright terms: Public domain W3C validator