![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 4801 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 3001 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: 0inp0 5377 opthprc 5764 2dom 9095 pw2eng 9144 djuexb 9978 hashge3el3dif 14536 cat1 18164 isusp 24291 bj-1upln0 36975 clsk1indlem0 44003 mnuprdlem1 44241 mnuprdlem2 44242 |
Copyright terms: Public domain | W3C validator |