| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version | ||
| Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| 0nep0 | ⊢ ∅ ≠ {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snnz 4724 | . 2 ⊢ {∅} ≠ ∅ |
| 3 | 2 | necomi 2982 | 1 ⊢ ∅ ≠ {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4278 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-nul 4279 df-sn 4572 |
| This theorem is referenced by: 0inp0 5292 opthprc 5675 2dom 8947 pw2eng 8991 djuexb 9797 hashge3el3dif 14389 cat1 17999 isusp 24171 bj-1upln0 37043 clsk1indlem0 44074 mnuprdlem1 44305 mnuprdlem2 44306 |
| Copyright terms: Public domain | W3C validator |