MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5280
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5231 . . 3 ∅ ∈ V
21snnz 4712 . 2 {∅} ≠ ∅
32necomi 2998 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2943  c0 4256  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-nul 4257  df-sn 4562
This theorem is referenced by:  0inp0  5281  opthprc  5651  2dom  8820  pw2eng  8865  djuexb  9667  hashge3el3dif  14200  cat1  17812  isusp  23413  bj-1upln0  35199  clsk1indlem0  41651  mnuprdlem1  41890  mnuprdlem2  41891
  Copyright terms: Public domain W3C validator