Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 4712 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2998 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: 0inp0 5281 opthprc 5651 2dom 8820 pw2eng 8865 djuexb 9667 hashge3el3dif 14200 cat1 17812 isusp 23413 bj-1upln0 35199 clsk1indlem0 41651 mnuprdlem1 41890 mnuprdlem2 41891 |
Copyright terms: Public domain | W3C validator |