MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nep0 Structured version   Visualization version   GIF version

Theorem 0nep0 5275
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 5226 . . 3 ∅ ∈ V
21snnz 4709 . 2 {∅} ≠ ∅
32necomi 2997 1 ∅ ≠ {∅}
Colors of variables: wff setvar class
Syntax hints:  wne 2942  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-nul 4254  df-sn 4559
This theorem is referenced by:  0inp0  5276  opthprc  5642  2dom  8774  pw2eng  8818  djuexb  9598  hashge3el3dif  14128  cat1  17728  isusp  23321  bj-1upln0  35126  clsk1indlem0  41540  mnuprdlem1  41779  mnuprdlem2  41780
  Copyright terms: Public domain W3C validator