Proof of Theorem kmlem14
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | neeq1 3002 | . . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ≠ 𝑤 ↔ 𝑦 ≠ 𝑤)) | 
| 2 |  | ineq1 4212 | . . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∩ 𝑤) = (𝑦 ∩ 𝑤)) | 
| 3 | 2 | eleq2d 2826 | . . . . . 6
⊢ (𝑧 = 𝑦 → (𝑣 ∈ (𝑧 ∩ 𝑤) ↔ 𝑣 ∈ (𝑦 ∩ 𝑤))) | 
| 4 | 1, 3 | anbi12d 632 | . . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)))) | 
| 5 | 4 | rexbidv 3178 | . . . 4
⊢ (𝑧 = 𝑦 → (∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)))) | 
| 6 | 5 | raleqbi1dv 3337 | . . 3
⊢ (𝑧 = 𝑦 → (∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)))) | 
| 7 | 6 | cbvrexvw 3237 | . 2
⊢
(∃𝑧 ∈
𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑦 ∈ 𝑥 ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤))) | 
| 8 |  | df-rex 3070 | . 2
⊢
(∃𝑦 ∈
𝑥 ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)) ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)))) | 
| 9 |  | eleq1w 2823 | . . . . . . . . 9
⊢ (𝑣 = 𝑧 → (𝑣 ∈ (𝑦 ∩ 𝑤) ↔ 𝑧 ∈ (𝑦 ∩ 𝑤))) | 
| 10 | 9 | anbi2d 630 | . . . . . . . 8
⊢ (𝑣 = 𝑧 → ((𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)) ↔ (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) | 
| 11 | 10 | rexbidv 3178 | . . . . . . 7
⊢ (𝑣 = 𝑧 → (∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)) ↔ ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) | 
| 12 | 11 | cbvralvw 3236 | . . . . . 6
⊢
(∀𝑣 ∈
𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)) ↔ ∀𝑧 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤))) | 
| 13 |  | df-ral 3061 | . . . . . 6
⊢
(∀𝑧 ∈
𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) | 
| 14 | 12, 13 | bitri 275 | . . . . 5
⊢
(∀𝑣 ∈
𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤)) ↔ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) | 
| 15 | 14 | anbi2i 623 | . . . 4
⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤))))) | 
| 16 |  | 19.28v 1989 | . . . 4
⊢
(∀𝑧(𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤))))) | 
| 17 |  | neeq2 3003 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑦 ≠ 𝑤 ↔ 𝑦 ≠ 𝑣)) | 
| 18 |  | ineq2 4213 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → (𝑦 ∩ 𝑤) = (𝑦 ∩ 𝑣)) | 
| 19 | 18 | eleq2d 2826 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑣 → (𝑧 ∈ (𝑦 ∩ 𝑤) ↔ 𝑧 ∈ (𝑦 ∩ 𝑣))) | 
| 20 | 17, 19 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → ((𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)) ↔ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) | 
| 21 | 20 | cbvrexvw 3237 | . . . . . . . . . 10
⊢
(∃𝑤 ∈
𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)) ↔ ∃𝑣 ∈ 𝑥 (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))) | 
| 22 |  | df-rex 3070 | . . . . . . . . . 10
⊢
(∃𝑣 ∈
𝑥 (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)) ↔ ∃𝑣(𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) | 
| 23 | 21, 22 | bitri 275 | . . . . . . . . 9
⊢
(∃𝑤 ∈
𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)) ↔ ∃𝑣(𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) | 
| 24 | 23 | imbi2i 336 | . . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤))) ↔ (𝑧 ∈ 𝑦 → ∃𝑣(𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 25 |  | 19.37v 1990 | . . . . . . . 8
⊢
(∃𝑣(𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) ↔ (𝑧 ∈ 𝑦 → ∃𝑣(𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 26 | 24, 25 | bitr4i 278 | . . . . . . 7
⊢ ((𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤))) ↔ ∃𝑣(𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 27 | 26 | anbi2i 623 | . . . . . 6
⊢ ((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) ↔ (𝑦 ∈ 𝑥 ∧ ∃𝑣(𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))))) | 
| 28 |  | 19.42v 1952 | . . . . . 6
⊢
(∃𝑣(𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) ↔ (𝑦 ∈ 𝑥 ∧ ∃𝑣(𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))))) | 
| 29 |  | 19.3v 1980 | . . . . . . . 8
⊢
(∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑) ↔ (𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 30 |  | kmlem14.1 | . . . . . . . . . 10
⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) | 
| 31 |  | elin 3966 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑦 ∩ 𝑣) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝑣)) | 
| 32 | 31 | baibr 536 | . . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑦 → (𝑧 ∈ 𝑣 ↔ 𝑧 ∈ (𝑦 ∩ 𝑣))) | 
| 33 | 32 | anbi2d 630 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑦 → (((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣) ↔ ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) | 
| 34 |  | anass 468 | . . . . . . . . . . . 12
⊢ (((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)) ↔ (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))) | 
| 35 | 33, 34 | bitrdi 287 | . . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑦 → (((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣) ↔ (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 36 | 35 | pm5.74i 271 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣)) ↔ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 37 | 30, 36 | bitri 275 | . . . . . . . . 9
⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) | 
| 38 | 37 | anbi2i 623 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝑥 ∧ 𝜑) ↔ (𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣)))))) | 
| 39 | 29, 38 | bitr2i 276 | . . . . . . 7
⊢ ((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) ↔ ∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 40 | 39 | exbii 1847 | . . . . . 6
⊢
(∃𝑣(𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → (𝑣 ∈ 𝑥 ∧ (𝑦 ≠ 𝑣 ∧ 𝑧 ∈ (𝑦 ∩ 𝑣))))) ↔ ∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 41 | 27, 28, 40 | 3bitr2i 299 | . . . . 5
⊢ ((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) ↔ ∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 42 | 41 | albii 1818 | . . . 4
⊢
(∀𝑧(𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑧 ∈ (𝑦 ∩ 𝑤)))) ↔ ∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 43 | 15, 16, 42 | 3bitr2i 299 | . . 3
⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤))) ↔ ∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 44 | 43 | exbii 1847 | . 2
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑣 ∈ 𝑦 ∃𝑤 ∈ 𝑥 (𝑦 ≠ 𝑤 ∧ 𝑣 ∈ (𝑦 ∩ 𝑤))) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | 
| 45 | 7, 8, 44 | 3bitri 297 | 1
⊢
(∃𝑧 ∈
𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) |