Proof of Theorem bnj1176
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj1176.51 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V)) | 
| 2 |  | bnj1176.52 | . . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ∧ 𝐶 ∈ V) → ∃𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐶 ¬ 𝑤𝑅𝑧) | 
| 3 | 1, 2 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐶 ¬ 𝑤𝑅𝑧) | 
| 4 |  | df-ral 3061 | . . . . . . . . 9
⊢
(∀𝑤 ∈
𝐶 ¬ 𝑤𝑅𝑧 ↔ ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) | 
| 5 | 4 | rexbii 3093 | . . . . . . . 8
⊢
(∃𝑧 ∈
𝐶 ∀𝑤 ∈ 𝐶 ¬ 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐶 ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) | 
| 6 | 3, 5 | sylib 218 | . . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐶 ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) | 
| 7 |  | df-rex 3070 | . . . . . . 7
⊢
(∃𝑧 ∈
𝐶 ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 8 | 6, 7 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧(𝑧 ∈ 𝐶 ∧ ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 9 |  | 19.28v 1989 | . . . . . . 7
⊢
(∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) ↔ (𝑧 ∈ 𝐶 ∧ ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 10 | 9 | exbii 1847 | . . . . . 6
⊢
(∃𝑧∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) ↔ ∃𝑧(𝑧 ∈ 𝐶 ∧ ∀𝑤(𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 11 | 8, 10 | sylibr 234 | . . . . 5
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 12 |  | 19.37v 1990 | . . . . 5
⊢
(∃𝑧((𝜑 ∧ 𝜓) → ∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ((𝜑 ∧ 𝜓) → ∃𝑧∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)))) | 
| 13 | 11, 12 | mpbir 231 | . . . 4
⊢
∃𝑧((𝜑 ∧ 𝜓) → ∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 14 |  | 19.21v 1938 | . . . . 5
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ((𝜑 ∧ 𝜓) → ∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)))) | 
| 15 | 14 | exbii 1847 | . . . 4
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ∃𝑧((𝜑 ∧ 𝜓) → ∀𝑤(𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)))) | 
| 16 | 13, 15 | mpbir 231 | . . 3
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) | 
| 17 |  | con2b 359 | . . . . . . 7
⊢ ((𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) | 
| 18 | 17 | anbi2i 623 | . . . . . 6
⊢ ((𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧)) ↔ (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) | 
| 19 | 18 | imbi2i 336 | . . . . 5
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) | 
| 20 | 19 | albii 1818 | . . . 4
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) | 
| 21 | 20 | exbii 1847 | . . 3
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤 ∈ 𝐶 → ¬ 𝑤𝑅𝑧))) ↔ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) | 
| 22 | 16, 21 | mpbi 230 | . 2
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) | 
| 23 |  | ax-1 6 | . . . . 5
⊢ ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) | 
| 24 | 23 | anim2i 617 | . . . 4
⊢ ((𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) | 
| 25 | 24 | imim2i 16 | . . 3
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) → ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))))) | 
| 26 | 25 | alimi 1810 | . 2
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) → ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))))) | 
| 27 | 22, 26 | bnj101 34738 | 1
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) |