Proof of Theorem reu6
| Step | Hyp | Ref
| Expression |
| 1 | | df-reu 3365 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 2 | | 19.28v 1996 |
. . . . 5
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 3 | | eleq1w 2818 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 4 | | sbequ12 2252 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 5 | 3, 4 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
| 6 | | equequ1 2025 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑦)) |
| 7 | 5, 6 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))) |
| 8 | | equid 2012 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
| 9 | 8 | tbt 369 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)) |
| 10 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 ∈ 𝐴) |
| 11 | 9, 10 | sylbir 235 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦 ∈ 𝐴) |
| 12 | 7, 11 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴)) |
| 13 | 12 | spimvw 1986 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) |
| 14 | | ibar 528 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 15 | 14 | bibi1d 343 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦))) |
| 16 | 15 | biimprcd 250 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 17 | 16 | sps 2186 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 18 | 13, 17 | jca 511 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 19 | 18 | axc4i 2323 |
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 20 | | biimp 215 |
. . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 21 | 20 | imim2i 16 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
| 22 | 21 | impd 410 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 24 | 3 | biimprcd 250 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
| 26 | 25 | imp 406 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) |
| 27 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 28 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) |
| 29 | | biimpr 220 |
. . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
| 30 | 27, 28, 29 | syl6ci 71 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 31 | 26, 30 | jcai 516 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 32 | 31 | ex 412 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 33 | 23, 32 | impbid 212 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 34 | 33 | alimi 1811 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 35 | 19, 34 | impbii 209 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 36 | | df-ral 3053 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
| 37 | 36 | anbi2i 623 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
| 38 | 2, 35, 37 | 3bitr4i 303 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 39 | 38 | exbii 1848 |
. . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 40 | | eu6 2574 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
| 41 | | df-rex 3062 |
. . 3
⊢
(∃𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
| 42 | 39, 40, 41 | 3bitr4i 303 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
| 43 | 1, 42 | bitri 275 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |