Proof of Theorem reu6
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-reu 3380 | . 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 2 |  | 19.28v 1989 | . . . . 5
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) | 
| 3 |  | eleq1w 2823 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 4 |  | sbequ12 2250 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 5 | 3, 4 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) | 
| 6 |  | equequ1 2023 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑦)) | 
| 7 | 5, 6 | bibi12d 345 | . . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))) | 
| 8 |  | equid 2010 | . . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 | 
| 9 | 8 | tbt 369 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)) | 
| 10 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 ∈ 𝐴) | 
| 11 | 9, 10 | sylbir 235 | . . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦 ∈ 𝐴) | 
| 12 | 7, 11 | biimtrdi 253 | . . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴)) | 
| 13 | 12 | spimvw 1994 | . . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) | 
| 14 |  | ibar 528 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 15 | 14 | bibi1d 343 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦))) | 
| 16 | 15 | biimprcd 250 | . . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) | 
| 17 | 16 | sps 2184 | . . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) | 
| 18 | 13, 17 | jca 511 | . . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) | 
| 19 | 18 | axc4i 2321 | . . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) | 
| 20 |  | biimp 215 | . . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | 
| 21 | 20 | imim2i 16 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | 
| 22 | 21 | impd 410 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) | 
| 23 | 22 | adantl 481 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) | 
| 24 | 3 | biimprcd 250 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) | 
| 26 | 25 | imp 406 | . . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) | 
| 27 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) | 
| 28 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | 
| 29 |  | biimpr 220 | . . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | 
| 30 | 27, 28, 29 | syl6ci 71 | . . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) | 
| 31 | 26, 30 | jcai 516 | . . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 32 | 31 | ex 412 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | 
| 33 | 23, 32 | impbid 212 | . . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) | 
| 34 | 33 | alimi 1810 | . . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) | 
| 35 | 19, 34 | impbii 209 | . . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) | 
| 36 |  | df-ral 3061 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) | 
| 37 | 36 | anbi2i 623 | . . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) | 
| 38 | 2, 35, 37 | 3bitr4i 303 | . . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) | 
| 39 | 38 | exbii 1847 | . . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) | 
| 40 |  | eu6 2573 | . . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) | 
| 41 |  | df-rex 3070 | . . 3
⊢
(∃𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) | 
| 42 | 39, 40, 41 | 3bitr4i 303 | . 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | 
| 43 | 1, 42 | bitri 275 | 1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |