MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6 Structured version   Visualization version   GIF version

Theorem reu6 3646
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
reu6 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu6
StepHypRef Expression
1 df-reu 3110 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 19.28v 1972 . . . . 5 (∀𝑥(𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦))))
3 eleq1w 2863 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
4 sbequ12 2214 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
53, 4anbi12d 630 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
6 equequ1 2007 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = 𝑦𝑦 = 𝑦))
75, 6bibi12d 347 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)))
8 equid 1994 . . . . . . . . . . . 12 𝑦 = 𝑦
98tbt 371 . . . . . . . . . . 11 ((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))
10 simpl 483 . . . . . . . . . . 11 ((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦𝐴)
119, 10sylbir 236 . . . . . . . . . 10 (((𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦𝐴)
127, 11syl6bi 254 . . . . . . . . 9 (𝑥 = 𝑦 → (((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → 𝑦𝐴))
1312spimvw 1977 . . . . . . . 8 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → 𝑦𝐴)
14 ibar 529 . . . . . . . . . . 11 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
1514bibi1d 345 . . . . . . . . . 10 (𝑥𝐴 → ((𝜑𝑥 = 𝑦) ↔ ((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦)))
1615biimprcd 251 . . . . . . . . 9 (((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1716sps 2146 . . . . . . . 8 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
1813, 17jca 512 . . . . . . 7 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → (𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))))
1918axc4i 2302 . . . . . 6 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))))
20 biimp 216 . . . . . . . . . . 11 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
2120imim2i 16 . . . . . . . . . 10 ((𝑥𝐴 → (𝜑𝑥 = 𝑦)) → (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
2221impd 411 . . . . . . . . 9 ((𝑥𝐴 → (𝜑𝑥 = 𝑦)) → ((𝑥𝐴𝜑) → 𝑥 = 𝑦))
2322adantl 482 . . . . . . . 8 ((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) → ((𝑥𝐴𝜑) → 𝑥 = 𝑦))
24 eleq1a 2876 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
2524adantr 481 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) → (𝑥 = 𝑦𝑥𝐴))
2625imp 407 . . . . . . . . . 10 (((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥𝐴)
27 biimpr 221 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
2827imim2i 16 . . . . . . . . . . . . 13 ((𝑥𝐴 → (𝜑𝑥 = 𝑦)) → (𝑥𝐴 → (𝑥 = 𝑦𝜑)))
2928com23 86 . . . . . . . . . . . 12 ((𝑥𝐴 → (𝜑𝑥 = 𝑦)) → (𝑥 = 𝑦 → (𝑥𝐴𝜑)))
3029imp 407 . . . . . . . . . . 11 (((𝑥𝐴 → (𝜑𝑥 = 𝑦)) ∧ 𝑥 = 𝑦) → (𝑥𝐴𝜑))
3130adantll 710 . . . . . . . . . 10 (((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥𝐴𝜑))
3226, 31jcai 517 . . . . . . . . 9 (((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥𝐴𝜑))
3332ex 413 . . . . . . . 8 ((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥𝐴𝜑)))
3423, 33impbid 213 . . . . . . 7 ((𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) → ((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦))
3534alimi 1791 . . . . . 6 (∀𝑥(𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))) → ∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦))
3619, 35impbii 210 . . . . 5 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦𝐴 ∧ (𝑥𝐴 → (𝜑𝑥 = 𝑦))))
37 df-ral 3108 . . . . . 6 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
3837anbi2i 622 . . . . 5 ((𝑦𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝑦)) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦))))
392, 36, 383bitr4i 304 . . . 4 (∀𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝑦)))
4039exbii 1827 . . 3 (∃𝑦𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝑦)))
41 eu6 2615 . . 3 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) ↔ 𝑥 = 𝑦))
42 df-rex 3109 . . 3 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝑦)))
4340, 41, 423bitr4i 304 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
441, 43bitri 276 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1518  wex 1759  [wsb 2040  wcel 2079  ∃!weu 2609  wral 3103  wrex 3104  ∃!wreu 3105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-12 2139  ax-ext 2767
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-cleq 2786  df-clel 2861  df-ral 3108  df-rex 3109  df-reu 3110
This theorem is referenced by:  reu3  3647  reu6i  3648  reu8  3653  xpf1o  8516  ufileu  22199  isppw2  25362  cusgrfilem2  26909  fgreu  30080  fcnvgreu  30081  fourierdlem50  41937
  Copyright terms: Public domain W3C validator