![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axrep4 | Structured version Visualization version GIF version |
Description: A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Matthew House, 18-Sep-2025.) |
Ref | Expression |
---|---|
axrep4.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
axrep4 | ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rep 5284 | . 2 ⊢ (∀𝑥∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑))) | |
2 | axrep4.1 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
3 | 2 | 19.3 2199 | . . . . . 6 ⊢ (∀𝑧𝜑 ↔ 𝜑) |
4 | 3 | imbi1i 349 | . . . . 5 ⊢ ((∀𝑧𝜑 → 𝑦 = 𝑧) ↔ (𝜑 → 𝑦 = 𝑧)) |
5 | 4 | albii 1815 | . . . 4 ⊢ (∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∀𝑦(𝜑 → 𝑦 = 𝑧)) |
6 | 5 | exbii 1844 | . . 3 ⊢ (∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
7 | 6 | albii 1815 | . 2 ⊢ (∀𝑥∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
8 | 3 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑) ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) |
9 | 8 | exbii 1844 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑) ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)) |
10 | 9 | bibi2i 337 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ (𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
11 | 10 | albii 1815 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
12 | 11 | exbii 1844 | . 2 ⊢ (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
13 | 1, 7, 12 | 3imtr3i 291 | 1 ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 ∃wex 1775 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 ax-rep 5284 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-nf 1780 |
This theorem is referenced by: axrep5 5292 axprlem3OLD 5433 funimaexgOLD 6654 |
Copyright terms: Public domain | W3C validator |