MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrep4 Structured version   Visualization version   GIF version

Theorem axrep4 5285
Description: A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Matthew House, 18-Sep-2025.)
Hypothesis
Ref Expression
axrep4.1 𝑧𝜑
Assertion
Ref Expression
axrep4 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem axrep4
StepHypRef Expression
1 ax-rep 5279 . 2 (∀𝑥𝑧𝑦(∀𝑧𝜑𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑧𝜑)))
2 axrep4.1 . . . . . . 7 𝑧𝜑
3219.3 2202 . . . . . 6 (∀𝑧𝜑𝜑)
43imbi1i 349 . . . . 5 ((∀𝑧𝜑𝑦 = 𝑧) ↔ (𝜑𝑦 = 𝑧))
54albii 1819 . . . 4 (∀𝑦(∀𝑧𝜑𝑦 = 𝑧) ↔ ∀𝑦(𝜑𝑦 = 𝑧))
65exbii 1848 . . 3 (∃𝑧𝑦(∀𝑧𝜑𝑦 = 𝑧) ↔ ∃𝑧𝑦(𝜑𝑦 = 𝑧))
76albii 1819 . 2 (∀𝑥𝑧𝑦(∀𝑧𝜑𝑦 = 𝑧) ↔ ∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧))
83anbi2i 623 . . . . . 6 ((𝑥𝑤 ∧ ∀𝑧𝜑) ↔ (𝑥𝑤𝜑))
98exbii 1848 . . . . 5 (∃𝑥(𝑥𝑤 ∧ ∀𝑧𝜑) ↔ ∃𝑥(𝑥𝑤𝜑))
109bibi2i 337 . . . 4 ((𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑧𝜑)) ↔ (𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1110albii 1819 . . 3 (∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑧𝜑)) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
1211exbii 1848 . 2 (∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ∀𝑧𝜑)) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
131, 7, 123imtr3i 291 1 (∀𝑥𝑧𝑦(𝜑𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177  ax-rep 5279
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784
This theorem is referenced by:  axrep5  5287  axprlem3OLD  5428  funimaexgOLD  6654
  Copyright terms: Public domain W3C validator