| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrep4 | Structured version Visualization version GIF version | ||
| Description: A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| Ref | Expression |
|---|---|
| axrep4.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| axrep4 | ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rep 5279 | . 2 ⊢ (∀𝑥∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑))) | |
| 2 | axrep4.1 | . . . . . . 7 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 2 | 19.3 2202 | . . . . . 6 ⊢ (∀𝑧𝜑 ↔ 𝜑) |
| 4 | 3 | imbi1i 349 | . . . . 5 ⊢ ((∀𝑧𝜑 → 𝑦 = 𝑧) ↔ (𝜑 → 𝑦 = 𝑧)) |
| 5 | 4 | albii 1819 | . . . 4 ⊢ (∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∀𝑦(𝜑 → 𝑦 = 𝑧)) |
| 6 | 5 | exbii 1848 | . . 3 ⊢ (∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥∃𝑧∀𝑦(∀𝑧𝜑 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) |
| 8 | 3 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑) ↔ (𝑥 ∈ 𝑤 ∧ 𝜑)) |
| 9 | 8 | exbii 1848 | . . . . 5 ⊢ (∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑) ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)) |
| 10 | 9 | bibi2i 337 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ (𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
| 11 | 10 | albii 1819 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
| 12 | 11 | exbii 1848 | . 2 ⊢ (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑧𝜑)) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
| 13 | 1, 7, 12 | 3imtr3i 291 | 1 ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 ax-rep 5279 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axrep5 5287 axprlem3OLD 5428 funimaexgOLD 6654 |
| Copyright terms: Public domain | W3C validator |