| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equvel | Structured version Visualization version GIF version | ||
| Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini 2458. Usage of this theorem is discouraged because it depends on ax-13 2375. Use equvelv 2029 when possible. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equvel | ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1817 | . 2 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (∀𝑧 𝑧 = 𝑥 ↔ ∀𝑧 𝑧 = 𝑦)) | |
| 2 | ax6e 2386 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝑦 | |
| 3 | biimpr 220 | . . . . . 6 ⊢ ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
| 4 | ax7 2014 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) | |
| 5 | 3, 4 | syli 39 | . . . . 5 ⊢ ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 6 | 5 | com12 32 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
| 7 | 2, 6 | eximii 1836 | . . 3 ⊢ ∃𝑧((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
| 8 | 7 | 19.35i 1877 | . 2 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → ∃𝑧 𝑥 = 𝑦) |
| 9 | 4 | spsd 2186 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 10 | 9 | sps 2184 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 11 | 10 | a1dd 50 | . . 3 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦))) |
| 12 | nfeqf 2384 | . . . . 5 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | |
| 13 | 12 | 19.9d 2202 | . . . 4 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦)) |
| 14 | 13 | ex 412 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦))) |
| 15 | 11, 14 | bija 380 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ↔ ∀𝑧 𝑧 = 𝑦) → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦)) |
| 16 | 1, 8, 15 | sylc 65 | 1 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |