Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equvel | Structured version Visualization version GIF version |
Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini 2455. Usage of this theorem is discouraged because it depends on ax-13 2372. Use equvelv 2034 when possible. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equvel | ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1821 | . 2 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (∀𝑧 𝑧 = 𝑥 ↔ ∀𝑧 𝑧 = 𝑦)) | |
2 | ax6e 2383 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝑦 | |
3 | biimpr 219 | . . . . . 6 ⊢ ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | |
4 | ax7 2019 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) | |
5 | 3, 4 | syli 39 | . . . . 5 ⊢ ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
6 | 5 | com12 32 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦)) |
7 | 2, 6 | eximii 1839 | . . 3 ⊢ ∃𝑧((𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
8 | 7 | 19.35i 1881 | . 2 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → ∃𝑧 𝑥 = 𝑦) |
9 | 4 | spsd 2180 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦)) |
10 | 9 | sps 2178 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦)) |
11 | 10 | a1dd 50 | . . 3 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑧 = 𝑦 → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦))) |
12 | nfeqf 2381 | . . . . 5 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | |
13 | 12 | 19.9d 2196 | . . . 4 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦)) |
14 | 13 | ex 413 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦))) |
15 | 11, 14 | bija 382 | . 2 ⊢ ((∀𝑧 𝑧 = 𝑥 ↔ ∀𝑧 𝑧 = 𝑦) → (∃𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦)) |
16 | 1, 8, 15 | sylc 65 | 1 ⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |