Proof of Theorem wl-exeq
| Step | Hyp | Ref
| Expression |
| 1 | | nfeqf 2386 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧) |
| 2 | 1 | 19.9d 2203 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑥 𝑦 = 𝑧 → 𝑦 = 𝑧)) |
| 3 | 2 | impancom 451 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∃𝑥 𝑦 = 𝑧) → (¬ ∀𝑥 𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| 4 | 3 | orrd 864 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∃𝑥 𝑦 = 𝑧) → (∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 5 | 4 | expcom 413 |
. . . . 5
⊢
(∃𝑥 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧))) |
| 6 | 5 | orrd 864 |
. . . 4
⊢
(∃𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧))) |
| 7 | | 3orass 1090 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧))) |
| 8 | 6, 7 | sylibr 234 |
. . 3
⊢
(∃𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 9 | | 3orrot 1092 |
. . 3
⊢ ((𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ↔ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 10 | 8, 9 | sylibr 234 |
. 2
⊢
(∃𝑥 𝑦 = 𝑧 → (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) |
| 11 | | 19.8a 2181 |
. . 3
⊢ (𝑦 = 𝑧 → ∃𝑥 𝑦 = 𝑧) |
| 12 | | ax6e 2388 |
. . . . 5
⊢
∃𝑥 𝑥 = 𝑧 |
| 13 | | ax7 2015 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
| 14 | 13 | com12 32 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑦 = 𝑧)) |
| 15 | 12, 14 | eximii 1837 |
. . . 4
⊢
∃𝑥(𝑥 = 𝑦 → 𝑦 = 𝑧) |
| 16 | 15 | 19.35i 1878 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥 𝑦 = 𝑧) |
| 17 | | ax6e 2388 |
. . . . 5
⊢
∃𝑥 𝑥 = 𝑦 |
| 18 | 17, 13 | eximii 1837 |
. . . 4
⊢
∃𝑥(𝑥 = 𝑧 → 𝑦 = 𝑧) |
| 19 | 18 | 19.35i 1878 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥 𝑦 = 𝑧) |
| 20 | 11, 16, 19 | 3jaoi 1430 |
. 2
⊢ ((𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) → ∃𝑥 𝑦 = 𝑧) |
| 21 | 10, 20 | impbii 209 |
1
⊢
(∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧)) |