Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-exeq Structured version   Visualization version   GIF version

Theorem wl-exeq 36893
Description: The semantics of 𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.)
Assertion
Ref Expression
wl-exeq (∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))

Proof of Theorem wl-exeq
StepHypRef Expression
1 nfeqf 2372 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧)
2119.9d 2188 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑥 𝑦 = 𝑧𝑦 = 𝑧))
32impancom 451 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∃𝑥 𝑦 = 𝑧) → (¬ ∀𝑥 𝑥 = 𝑧𝑦 = 𝑧))
43orrd 860 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∃𝑥 𝑦 = 𝑧) → (∀𝑥 𝑥 = 𝑧𝑦 = 𝑧))
54expcom 413 . . . . 5 (∃𝑥 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧𝑦 = 𝑧)))
65orrd 860 . . . 4 (∃𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧𝑦 = 𝑧)))
7 3orass 1087 . . . 4 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧𝑦 = 𝑧) ↔ (∀𝑥 𝑥 = 𝑦 ∨ (∀𝑥 𝑥 = 𝑧𝑦 = 𝑧)))
86, 7sylibr 233 . . 3 (∃𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧𝑦 = 𝑧))
9 3orrot 1089 . . 3 ((𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) ↔ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧𝑦 = 𝑧))
108, 9sylibr 233 . 2 (∃𝑥 𝑦 = 𝑧 → (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
11 19.8a 2166 . . 3 (𝑦 = 𝑧 → ∃𝑥 𝑦 = 𝑧)
12 ax6e 2374 . . . . 5 𝑥 𝑥 = 𝑧
13 ax7 2011 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
1413com12 32 . . . . 5 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑦 = 𝑧))
1512, 14eximii 1831 . . . 4 𝑥(𝑥 = 𝑦𝑦 = 𝑧)
161519.35i 1873 . . 3 (∀𝑥 𝑥 = 𝑦 → ∃𝑥 𝑦 = 𝑧)
17 ax6e 2374 . . . . 5 𝑥 𝑥 = 𝑦
1817, 13eximii 1831 . . . 4 𝑥(𝑥 = 𝑧𝑦 = 𝑧)
191819.35i 1873 . . 3 (∀𝑥 𝑥 = 𝑧 → ∃𝑥 𝑦 = 𝑧)
2011, 16, 193jaoi 1424 . 2 ((𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧) → ∃𝑥 𝑦 = 𝑧)
2110, 20impbii 208 1 (∃𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∨ ∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥 𝑥 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3o 1083  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163  ax-13 2363
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778
This theorem is referenced by:  wl-nfeqfb  36895
  Copyright terms: Public domain W3C validator