| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spcimdvv | Structured version Visualization version GIF version | ||
| Description: Remove from spcimdv 3577 dependency on ax-7 2008, ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178 ax-13 2377, ax-ext 2708, df-cleq 2728, df-clab 2715 (and df-nfc 2886, df-v 3466, df-or 848, df-tru 1543, df-nf 1784) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 36918. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-spcimdvv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| bj-spcimdvv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| bj-spcimdvv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-spcimdvv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
| 4 | bj-spcimdvv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | elissetv 2816 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 6 | exim 1834 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜒))) | |
| 7 | 5, 6 | syl5 34 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → ∃𝑥(𝜓 → 𝜒))) |
| 8 | 19.36v 1993 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → 𝜒)) | |
| 9 | 7, 8 | imbitrdi 251 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
| 10 | 3, 4, 9 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |