Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spcimdvv | Structured version Visualization version GIF version |
Description: Remove from spcimdv 3522 dependency on ax-7 2012, ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173 ax-13 2372, ax-ext 2709, df-cleq 2730, df-clab 2716 (and df-nfc 2888, df-v 3424, df-or 844, df-tru 1542, df-nf 1788) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 35007. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spcimdvv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
bj-spcimdvv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bj-spcimdvv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-spcimdvv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | bj-spcimdvv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | elissetv 2819 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
6 | exim 1837 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜒))) | |
7 | 5, 6 | syl5 34 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → ∃𝑥(𝜓 → 𝜒))) |
8 | 19.36v 1992 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → 𝜒)) | |
9 | 7, 8 | syl6ib 250 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
10 | 3, 4, 9 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |