Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spcimdvv Structured version   Visualization version   GIF version

Theorem bj-spcimdvv 35008
Description: Remove from spcimdv 3522 dependency on ax-7 2012, ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173 ax-13 2372, ax-ext 2709, df-cleq 2730, df-clab 2716 (and df-nfc 2888, df-v 3424, df-or 844, df-tru 1542, df-nf 1788) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 35007. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-spcimdvv.1 (𝜑𝐴𝐵)
bj-spcimdvv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
bj-spcimdvv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem bj-spcimdvv
StepHypRef Expression
1 bj-spcimdvv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
21ex 412 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
32alrimiv 1931 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
4 bj-spcimdvv.1 . 2 (𝜑𝐴𝐵)
5 elissetv 2819 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
6 exim 1837 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜒)))
75, 6syl5 34 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → ∃𝑥(𝜓𝜒)))
8 19.36v 1992 . . 3 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓𝜒))
97, 8syl6ib 250 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
103, 4, 9sylc 65 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator