Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spcimdvv Structured version   Visualization version   GIF version

Theorem bj-spcimdvv 35081
Description: Remove from spcimdv 3532 dependency on ax-7 2011, ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171 ax-13 2372, ax-ext 2709, df-cleq 2730, df-clab 2716 (and df-nfc 2889, df-v 3434, df-or 845, df-tru 1542, df-nf 1787) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 35080. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-spcimdvv.1 (𝜑𝐴𝐵)
bj-spcimdvv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
bj-spcimdvv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem bj-spcimdvv
StepHypRef Expression
1 bj-spcimdvv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
21ex 413 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
32alrimiv 1930 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
4 bj-spcimdvv.1 . 2 (𝜑𝐴𝐵)
5 elissetv 2819 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
6 exim 1836 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜒)))
75, 6syl5 34 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → ∃𝑥(𝜓𝜒)))
8 19.36v 1991 . . 3 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓𝜒))
97, 8syl6ib 250 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
103, 4, 9sylc 65 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator