MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclegftOLD Structured version   Visualization version   GIF version

Theorem vtoclegftOLD 3569
Description: Obsolete version of vtoclegft 3568 as of 26-Jan-2025. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vtoclegftOLD ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem vtoclegftOLD
StepHypRef Expression
1 elisset 2809 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 exim 1828 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑))
31, 2mpan9 506 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
433adant2 1128 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
5 19.9t 2189 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
653ad2ant2 1131 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → (∃𝑥𝜑𝜑))
74, 6mpbid 231 1 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084  wal 1531   = wceq 1533  wex 1773  wnf 1777  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-clel 2804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator