MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2false Structured version   Visualization version   GIF version

Theorem 2false 376
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypotheses
Ref Expression
2false.1 ¬ 𝜑
2false.2 ¬ 𝜓
Assertion
Ref Expression
2false (𝜑𝜓)

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3 ¬ 𝜑
2 2false.2 . . 3 ¬ 𝜓
31, 22th 264 . 2 𝜑 ↔ ¬ 𝜓)
43con4bii 321 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bianfi  535  bifal  1555  dfnul3  4266  dfnul2OLD  4267  co02  6178  0er  8566  00lss  20248  00ply1bas  21456  2lgslem4  26599  signswch  32585  pexmidlem8N  38033  dandysum2p2e4  44551
  Copyright terms: Public domain W3C validator