Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnul3 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1553 | . . . 4 ⊢ ¬ ⊥ | |
2 | pm3.24 403 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | 2false 376 | . . 3 ⊢ (⊥ ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
4 | 3 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ⊥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
5 | dfnul4 4258 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
6 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
7 | 4, 5, 6 | 3eqtr4i 2776 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ⊥wfal 1551 ∈ wcel 2106 {cab 2715 {crab 3068 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-rab 3073 df-dif 3890 df-nul 4257 |
This theorem is referenced by: difid 4304 kmlem3 9908 |
Copyright terms: Public domain | W3C validator |