![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul3 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1547 | . . . 4 ⊢ ¬ ⊥ | |
2 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
3 | 1, 2 | 2false 375 | . . 3 ⊢ (⊥ ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
4 | 3 | abbii 2794 | . 2 ⊢ {𝑥 ∣ ⊥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
5 | dfnul4 4317 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
6 | df-rab 3425 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ⊥wfal 1545 ∈ wcel 2098 {cab 2701 {crab 3424 ∅c0 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-rab 3425 df-dif 3944 df-nul 4316 |
This theorem is referenced by: difid 4363 kmlem3 10144 |
Copyright terms: Public domain | W3C validator |