MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnul3 Structured version   Visualization version   GIF version

Theorem dfnul3 4257
Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.)
Assertion
Ref Expression
dfnul3 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}

Proof of Theorem dfnul3
StepHypRef Expression
1 fal 1553 . . . 4 ¬ ⊥
2 pm3.24 402 . . . 4 ¬ (𝑥𝐴 ∧ ¬ 𝑥𝐴)
31, 22false 375 . . 3 (⊥ ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐴))
43abbii 2809 . 2 {𝑥 ∣ ⊥} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
5 dfnul4 4255 . 2 ∅ = {𝑥 ∣ ⊥}
6 df-rab 3072 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐴} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐴)}
74, 5, 63eqtr4i 2776 1 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wfal 1551  wcel 2108  {cab 2715  {crab 3067  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072  df-dif 3886  df-nul 4254
This theorem is referenced by:  difid  4301  kmlem3  9839
  Copyright terms: Public domain W3C validator