| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnul3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1554 | . . . 4 ⊢ ¬ ⊥ | |
| 2 | pm3.24 402 | . . . 4 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | 2false 375 | . . 3 ⊢ (⊥ ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 4 | 3 | abbii 2797 | . 2 ⊢ {𝑥 ∣ ⊥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
| 5 | dfnul4 4301 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 6 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
| 7 | 4, 5, 6 | 3eqtr4i 2763 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ⊥wfal 1552 ∈ wcel 2109 {cab 2708 {crab 3408 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: difid 4342 kmlem3 10113 |
| Copyright terms: Public domain | W3C validator |