![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0er | Structured version Visualization version GIF version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5812 | . 2 ⊢ Rel ∅ | |
2 | df-br 5149 | . . 3 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
3 | noel 4344 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
4 | 3 | pm2.21i 119 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
5 | 2, 4 | sylbi 217 | . 2 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
6 | 3 | pm2.21i 119 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
7 | 2, 6 | sylbi 217 | . . 3 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝑥∅𝑦 ∧ 𝑦∅𝑧) → 𝑥∅𝑧) |
9 | noel 4344 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
10 | noel 4344 | . . . 4 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
11 | 9, 10 | 2false 375 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
12 | df-br 5149 | . . 3 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
13 | 11, 12 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
14 | 1, 5, 8, 13 | iseri 8771 | 1 ⊢ ∅ Er ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∅c0 4339 〈cop 4637 class class class wbr 5148 Er wer 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-er 8744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |