| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0er | Structured version Visualization version GIF version | ||
| Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| 0er | ⊢ ∅ Er ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5762 | . 2 ⊢ Rel ∅ | |
| 2 | df-br 5108 | . . 3 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
| 3 | noel 4301 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 4 | 3 | pm2.21i 119 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
| 5 | 2, 4 | sylbi 217 | . 2 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
| 6 | 3 | pm2.21i 119 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
| 7 | 2, 6 | sylbi 217 | . . 3 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝑥∅𝑦 ∧ 𝑦∅𝑧) → 𝑥∅𝑧) |
| 9 | noel 4301 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 10 | noel 4301 | . . . 4 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
| 12 | df-br 5108 | . . 3 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
| 14 | 1, 5, 8, 13 | iseri 8698 | 1 ⊢ ∅ Er ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4296 〈cop 4595 class class class wbr 5107 Er wer 8668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-er 8671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |