MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0er Structured version   Visualization version   GIF version

Theorem 0er 8493
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5698 . 2 Rel ∅
2 df-br 5071 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
3 noel 4261 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
43pm2.21i 119 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
52, 4sylbi 216 . 2 (𝑥𝑦𝑦𝑥)
63pm2.21i 119 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
72, 6sylbi 216 . . 3 (𝑥𝑦𝑥𝑧)
87adantr 480 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
9 noel 4261 . . . 4 ¬ 𝑥 ∈ ∅
10 noel 4261 . . . 4 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
119, 102false 375 . . 3 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
12 df-br 5071 . . 3 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1311, 12bitr4i 277 . 2 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
141, 5, 8, 13iseri 8483 1 ∅ Er ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  c0 4253  cop 4564   class class class wbr 5070   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-er 8456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator