MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0er Structured version   Visualization version   GIF version

Theorem 0er 8666
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5743 . 2 Rel ∅
2 df-br 5094 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
3 noel 4287 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
43pm2.21i 119 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
52, 4sylbi 217 . 2 (𝑥𝑦𝑦𝑥)
63pm2.21i 119 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
72, 6sylbi 217 . . 3 (𝑥𝑦𝑥𝑧)
87adantr 480 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
9 noel 4287 . . . 4 ¬ 𝑥 ∈ ∅
10 noel 4287 . . . 4 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
119, 102false 375 . . 3 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
12 df-br 5094 . . 3 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1311, 12bitr4i 278 . 2 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
141, 5, 8, 13iseri 8655 1 ∅ Er ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  c0 4282  cop 4581   class class class wbr 5093   Er wer 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-er 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator