Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0er | Structured version Visualization version GIF version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5698 | . 2 ⊢ Rel ∅ | |
2 | df-br 5071 | . . 3 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
3 | noel 4261 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
4 | 3 | pm2.21i 119 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
5 | 2, 4 | sylbi 216 | . 2 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
6 | 3 | pm2.21i 119 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
7 | 2, 6 | sylbi 216 | . . 3 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝑥∅𝑦 ∧ 𝑦∅𝑧) → 𝑥∅𝑧) |
9 | noel 4261 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
10 | noel 4261 | . . . 4 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
11 | 9, 10 | 2false 375 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
12 | df-br 5071 | . . 3 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
13 | 11, 12 | bitr4i 277 | . 2 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
14 | 1, 5, 8, 13 | iseri 8483 | 1 ⊢ ∅ Er ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4253 〈cop 4564 class class class wbr 5070 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-er 8456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |