MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lss Structured version   Visualization version   GIF version

Theorem 00lss 20914
Description: The empty structure has no subspaces (for use with fvco4i 6995). (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
00lss ∅ = (LSubSp‘∅)

Proof of Theorem 00lss
StepHypRef Expression
1 noel 4330 . . 3 ¬ 𝑎 ∈ ∅
2 base0 17213 . . . . . 6 ∅ = (Base‘∅)
3 eqid 2726 . . . . . 6 (LSubSp‘∅) = (LSubSp‘∅)
42, 3lssss 20909 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅)
5 ss0 4396 . . . . 5 (𝑎 ⊆ ∅ → 𝑎 = ∅)
64, 5syl 17 . . . 4 (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅)
73lssn0 20913 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅)
87neneqd 2935 . . . 4 (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅)
96, 8pm2.65i 193 . . 3 ¬ 𝑎 ∈ (LSubSp‘∅)
101, 92false 374 . 2 (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅))
1110eqriv 2723 1 ∅ = (LSubSp‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wss 3946  c0 4322  cfv 6546  LSubSpclss 20904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-1cn 11207  ax-addcl 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-nn 12259  df-slot 17179  df-ndx 17191  df-base 17209  df-lss 20905
This theorem is referenced by:  00lsp  20954  lidlval  21195
  Copyright terms: Public domain W3C validator