MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lss Structured version   Visualization version   GIF version

Theorem 00lss 20939
Description: The empty structure has no subspaces (for use with fvco4i 7010). (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
00lss ∅ = (LSubSp‘∅)

Proof of Theorem 00lss
StepHypRef Expression
1 noel 4338 . . 3 ¬ 𝑎 ∈ ∅
2 base0 17252 . . . . . 6 ∅ = (Base‘∅)
3 eqid 2737 . . . . . 6 (LSubSp‘∅) = (LSubSp‘∅)
42, 3lssss 20934 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅)
5 ss0 4402 . . . . 5 (𝑎 ⊆ ∅ → 𝑎 = ∅)
64, 5syl 17 . . . 4 (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅)
73lssn0 20938 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅)
87neneqd 2945 . . . 4 (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅)
96, 8pm2.65i 194 . . 3 ¬ 𝑎 ∈ (LSubSp‘∅)
101, 92false 375 . 2 (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅))
1110eqriv 2734 1 ∅ = (LSubSp‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wss 3951  c0 4333  cfv 6561  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-slot 17219  df-ndx 17231  df-base 17248  df-lss 20930
This theorem is referenced by:  00lsp  20979  lidlval  21220
  Copyright terms: Public domain W3C validator