MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lss Structured version   Visualization version   GIF version

Theorem 00lss 20825
Description: The empty structure has no subspaces (for use with fvco4i 6999). (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
00lss ∅ = (LSubSp‘∅)

Proof of Theorem 00lss
StepHypRef Expression
1 noel 4331 . . 3 ¬ 𝑎 ∈ ∅
2 base0 17185 . . . . . 6 ∅ = (Base‘∅)
3 eqid 2728 . . . . . 6 (LSubSp‘∅) = (LSubSp‘∅)
42, 3lssss 20820 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅)
5 ss0 4399 . . . . 5 (𝑎 ⊆ ∅ → 𝑎 = ∅)
64, 5syl 17 . . . 4 (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅)
73lssn0 20824 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅)
87neneqd 2942 . . . 4 (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅)
96, 8pm2.65i 193 . . 3 ¬ 𝑎 ∈ (LSubSp‘∅)
101, 92false 375 . 2 (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅))
1110eqriv 2725 1 ∅ = (LSubSp‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wss 3947  c0 4323  cfv 6548  LSubSpclss 20815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-1cn 11197  ax-addcl 11199
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-nn 12244  df-slot 17151  df-ndx 17163  df-base 17181  df-lss 20816
This theorem is referenced by:  00lsp  20865  lidlval  21106
  Copyright terms: Public domain W3C validator