![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 00lss | Structured version Visualization version GIF version |
Description: The empty structure has no subspaces (for use with fvco4i 6527). (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
00lss | ⊢ ∅ = (LSubSp‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4150 | . . 3 ⊢ ¬ 𝑎 ∈ ∅ | |
2 | base0 16282 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
3 | eqid 2825 | . . . . . 6 ⊢ (LSubSp‘∅) = (LSubSp‘∅) | |
4 | 2, 3 | lssss 19300 | . . . . 5 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅) |
5 | ss0 4201 | . . . . 5 ⊢ (𝑎 ⊆ ∅ → 𝑎 = ∅) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅) |
7 | 3 | lssn0 19304 | . . . . 5 ⊢ (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅) |
8 | 7 | neneqd 3004 | . . . 4 ⊢ (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅) |
9 | 6, 8 | pm2.65i 186 | . . 3 ⊢ ¬ 𝑎 ∈ (LSubSp‘∅) |
10 | 1, 9 | 2false 367 | . 2 ⊢ (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅)) |
11 | 10 | eqriv 2822 | 1 ⊢ ∅ = (LSubSp‘∅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ∅c0 4146 ‘cfv 6127 LSubSpclss 19295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-slot 16233 df-base 16235 df-lss 19296 |
This theorem is referenced by: 00lsp 19347 lidlval 19560 |
Copyright terms: Public domain | W3C validator |