MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lss Structured version   Visualization version   GIF version

Theorem 00lss 20903
Description: The empty structure has no subspaces (for use with fvco4i 6985). (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
00lss ∅ = (LSubSp‘∅)

Proof of Theorem 00lss
StepHypRef Expression
1 noel 4318 . . 3 ¬ 𝑎 ∈ ∅
2 base0 17238 . . . . . 6 ∅ = (Base‘∅)
3 eqid 2736 . . . . . 6 (LSubSp‘∅) = (LSubSp‘∅)
42, 3lssss 20898 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ⊆ ∅)
5 ss0 4382 . . . . 5 (𝑎 ⊆ ∅ → 𝑎 = ∅)
64, 5syl 17 . . . 4 (𝑎 ∈ (LSubSp‘∅) → 𝑎 = ∅)
73lssn0 20902 . . . . 5 (𝑎 ∈ (LSubSp‘∅) → 𝑎 ≠ ∅)
87neneqd 2938 . . . 4 (𝑎 ∈ (LSubSp‘∅) → ¬ 𝑎 = ∅)
96, 8pm2.65i 194 . . 3 ¬ 𝑎 ∈ (LSubSp‘∅)
101, 92false 375 . 2 (𝑎 ∈ ∅ ↔ 𝑎 ∈ (LSubSp‘∅))
1110eqriv 2733 1 ∅ = (LSubSp‘∅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3931  c0 4313  cfv 6536  LSubSpclss 20893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-slot 17206  df-ndx 17218  df-base 17234  df-lss 20894
This theorem is referenced by:  00lsp  20943  lidlval  21176
  Copyright terms: Public domain W3C validator