| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for 2lgs 27325: special case of 2lgs 27325 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgs2 27323 | . . 3 ⊢ (2 /L 2) = 0 | |
| 2 | 1 | eqeq1i 2735 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
| 3 | 0ne1 12264 | . . . 4 ⊢ 0 ≠ 1 | |
| 4 | 3 | neii 2928 | . . 3 ⊢ ¬ 0 = 1 |
| 5 | 1ne2 12396 | . . . . 5 ⊢ 1 ≠ 2 | |
| 6 | 5 | nesymi 2983 | . . . 4 ⊢ ¬ 2 = 1 |
| 7 | 2re 12267 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt7 12378 | . . . . . 6 ⊢ 2 < 7 | |
| 9 | 7, 8 | ltneii 11294 | . . . . 5 ⊢ 2 ≠ 7 |
| 10 | 9 | neii 2928 | . . . 4 ⊢ ¬ 2 = 7 |
| 11 | 6, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
| 12 | 4, 11 | 2false 375 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
| 13 | 8nn 12288 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 14 | nnrp 12970 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
| 16 | 0le2 12295 | . . . . 5 ⊢ 0 ≤ 2 | |
| 17 | 2lt8 12385 | . . . . 5 ⊢ 2 < 8 | |
| 18 | modid 13865 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
| 19 | 7, 15, 16, 17, 18 | mp4an 693 | . . . 4 ⊢ (2 mod 8) = 2 |
| 20 | 19 | eleq1i 2820 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
| 21 | 2ex 12270 | . . . 4 ⊢ 2 ∈ V | |
| 22 | 21 | elpr 4617 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
| 23 | 20, 22 | bitr2i 276 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
| 24 | 2, 12, 23 | 3bitri 297 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4594 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 < clt 11215 ≤ cle 11216 ℕcn 12193 2c2 12248 7c7 12253 8c8 12254 ℝ+crp 12958 mod cmo 13838 /L clgs 27212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-pc 16815 df-lgs 27213 |
| This theorem is referenced by: 2lgs 27325 |
| Copyright terms: Public domain | W3C validator |