![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for 2lgs 27255: special case of 2lgs 27255 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgs2 27253 | . . 3 ⊢ (2 /L 2) = 0 | |
2 | 1 | eqeq1i 2729 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
3 | 0ne1 12279 | . . . 4 ⊢ 0 ≠ 1 | |
4 | 3 | neii 2934 | . . 3 ⊢ ¬ 0 = 1 |
5 | 1ne2 12416 | . . . . 5 ⊢ 1 ≠ 2 | |
6 | 5 | nesymi 2990 | . . . 4 ⊢ ¬ 2 = 1 |
7 | 2re 12282 | . . . . . 6 ⊢ 2 ∈ ℝ | |
8 | 2lt7 12398 | . . . . . 6 ⊢ 2 < 7 | |
9 | 7, 8 | ltneii 11323 | . . . . 5 ⊢ 2 ≠ 7 |
10 | 9 | neii 2934 | . . . 4 ⊢ ¬ 2 = 7 |
11 | 6, 10 | pm3.2ni 877 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
12 | 4, 11 | 2false 375 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
13 | 8nn 12303 | . . . . . 6 ⊢ 8 ∈ ℕ | |
14 | nnrp 12981 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
16 | 0le2 12310 | . . . . 5 ⊢ 0 ≤ 2 | |
17 | 2lt8 12405 | . . . . 5 ⊢ 2 < 8 | |
18 | modid 13857 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
19 | 7, 15, 16, 17, 18 | mp4an 690 | . . . 4 ⊢ (2 mod 8) = 2 |
20 | 19 | eleq1i 2816 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
21 | 2ex 12285 | . . . 4 ⊢ 2 ∈ V | |
22 | 21 | elpr 4643 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
23 | 20, 22 | bitr2i 276 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
24 | 2, 12, 23 | 3bitri 297 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 {cpr 4622 class class class wbr 5138 (class class class)co 7401 ℝcr 11104 0cc0 11105 1c1 11106 < clt 11244 ≤ cle 11245 ℕcn 12208 2c2 12263 7c7 12268 8c8 12269 ℝ+crp 12970 mod cmo 13830 /L clgs 27142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 df-phi 16697 df-pc 16768 df-lgs 27143 |
This theorem is referenced by: 2lgs 27255 |
Copyright terms: Public domain | W3C validator |