MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem4 Structured version   Visualization version   GIF version

Theorem 2lgslem4 27354
Description: Lemma 4 for 2lgs 27355: special case of 2lgs 27355 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
2lgslem4 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})

Proof of Theorem 2lgslem4
StepHypRef Expression
1 2lgs2 27353 . . 3 (2 /L 2) = 0
21eqeq1i 2738 . 2 ((2 /L 2) = 1 ↔ 0 = 1)
3 0ne1 12206 . . . 4 0 ≠ 1
43neii 2932 . . 3 ¬ 0 = 1
5 1ne2 12338 . . . . 5 1 ≠ 2
65nesymi 2987 . . . 4 ¬ 2 = 1
7 2re 12209 . . . . . 6 2 ∈ ℝ
8 2lt7 12320 . . . . . 6 2 < 7
97, 8ltneii 11236 . . . . 5 2 ≠ 7
109neii 2932 . . . 4 ¬ 2 = 7
116, 10pm3.2ni 880 . . 3 ¬ (2 = 1 ∨ 2 = 7)
124, 112false 375 . 2 (0 = 1 ↔ (2 = 1 ∨ 2 = 7))
13 8nn 12230 . . . . . 6 8 ∈ ℕ
14 nnrp 12912 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
1513, 14ax-mp 5 . . . . 5 8 ∈ ℝ+
16 0le2 12237 . . . . 5 0 ≤ 2
17 2lt8 12327 . . . . 5 2 < 8
18 modid 13810 . . . . 5 (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2)
197, 15, 16, 17, 18mp4an 693 . . . 4 (2 mod 8) = 2
2019eleq1i 2824 . . 3 ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7})
21 2ex 12212 . . . 4 2 ∈ V
2221elpr 4602 . . 3 (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7))
2320, 22bitr2i 276 . 2 ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7})
242, 12, 233bitri 297 1 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2113  {cpr 4579   class class class wbr 5095  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017   < clt 11156  cle 11157  cn 12135  2c2 12190  7c7 12195  8c8 12196  +crp 12900   mod cmo 13783   /L clgs 27242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-dvds 16174  df-gcd 16416  df-prm 16593  df-phi 16687  df-pc 16759  df-lgs 27243
This theorem is referenced by:  2lgs  27355
  Copyright terms: Public domain W3C validator