MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem4 Structured version   Visualization version   GIF version

Theorem 2lgslem4 27317
Description: Lemma 4 for 2lgs 27318: special case of 2lgs 27318 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
2lgslem4 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})

Proof of Theorem 2lgslem4
StepHypRef Expression
1 2lgs2 27316 . . 3 (2 /L 2) = 0
21eqeq1i 2734 . 2 ((2 /L 2) = 1 ↔ 0 = 1)
3 0ne1 12257 . . . 4 0 ≠ 1
43neii 2927 . . 3 ¬ 0 = 1
5 1ne2 12389 . . . . 5 1 ≠ 2
65nesymi 2982 . . . 4 ¬ 2 = 1
7 2re 12260 . . . . . 6 2 ∈ ℝ
8 2lt7 12371 . . . . . 6 2 < 7
97, 8ltneii 11287 . . . . 5 2 ≠ 7
109neii 2927 . . . 4 ¬ 2 = 7
116, 10pm3.2ni 880 . . 3 ¬ (2 = 1 ∨ 2 = 7)
124, 112false 375 . 2 (0 = 1 ↔ (2 = 1 ∨ 2 = 7))
13 8nn 12281 . . . . . 6 8 ∈ ℕ
14 nnrp 12963 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
1513, 14ax-mp 5 . . . . 5 8 ∈ ℝ+
16 0le2 12288 . . . . 5 0 ≤ 2
17 2lt8 12378 . . . . 5 2 < 8
18 modid 13858 . . . . 5 (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2)
197, 15, 16, 17, 18mp4an 693 . . . 4 (2 mod 8) = 2
2019eleq1i 2819 . . 3 ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7})
21 2ex 12263 . . . 4 2 ∈ V
2221elpr 4614 . . 3 (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7))
2320, 22bitr2i 276 . 2 ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7})
242, 12, 233bitri 297 1 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  {cpr 4591   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cn 12186  2c2 12241  7c7 12246  8c8 12247  +crp 12951   mod cmo 13831   /L clgs 27205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-pc 16808  df-lgs 27206
This theorem is referenced by:  2lgs  27318
  Copyright terms: Public domain W3C validator