| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for 2lgs 27370: special case of 2lgs 27370 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgs2 27368 | . . 3 ⊢ (2 /L 2) = 0 | |
| 2 | 1 | eqeq1i 2740 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
| 3 | 0ne1 12311 | . . . 4 ⊢ 0 ≠ 1 | |
| 4 | 3 | neii 2934 | . . 3 ⊢ ¬ 0 = 1 |
| 5 | 1ne2 12448 | . . . . 5 ⊢ 1 ≠ 2 | |
| 6 | 5 | nesymi 2989 | . . . 4 ⊢ ¬ 2 = 1 |
| 7 | 2re 12314 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt7 12430 | . . . . . 6 ⊢ 2 < 7 | |
| 9 | 7, 8 | ltneii 11348 | . . . . 5 ⊢ 2 ≠ 7 |
| 10 | 9 | neii 2934 | . . . 4 ⊢ ¬ 2 = 7 |
| 11 | 6, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
| 12 | 4, 11 | 2false 375 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
| 13 | 8nn 12335 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 14 | nnrp 13020 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
| 16 | 0le2 12342 | . . . . 5 ⊢ 0 ≤ 2 | |
| 17 | 2lt8 12437 | . . . . 5 ⊢ 2 < 8 | |
| 18 | modid 13913 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
| 19 | 7, 15, 16, 17, 18 | mp4an 693 | . . . 4 ⊢ (2 mod 8) = 2 |
| 20 | 19 | eleq1i 2825 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
| 21 | 2ex 12317 | . . . 4 ⊢ 2 ∈ V | |
| 22 | 21 | elpr 4626 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
| 23 | 20, 22 | bitr2i 276 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
| 24 | 2, 12, 23 | 3bitri 297 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {cpr 4603 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 < clt 11269 ≤ cle 11270 ℕcn 12240 2c2 12295 7c7 12300 8c8 12301 ℝ+crp 13008 mod cmo 13886 /L clgs 27257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-prm 16691 df-phi 16785 df-pc 16857 df-lgs 27258 |
| This theorem is referenced by: 2lgs 27370 |
| Copyright terms: Public domain | W3C validator |