| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for 2lgs 27355: special case of 2lgs 27355 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgs2 27353 | . . 3 ⊢ (2 /L 2) = 0 | |
| 2 | 1 | eqeq1i 2738 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
| 3 | 0ne1 12206 | . . . 4 ⊢ 0 ≠ 1 | |
| 4 | 3 | neii 2932 | . . 3 ⊢ ¬ 0 = 1 |
| 5 | 1ne2 12338 | . . . . 5 ⊢ 1 ≠ 2 | |
| 6 | 5 | nesymi 2987 | . . . 4 ⊢ ¬ 2 = 1 |
| 7 | 2re 12209 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt7 12320 | . . . . . 6 ⊢ 2 < 7 | |
| 9 | 7, 8 | ltneii 11236 | . . . . 5 ⊢ 2 ≠ 7 |
| 10 | 9 | neii 2932 | . . . 4 ⊢ ¬ 2 = 7 |
| 11 | 6, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
| 12 | 4, 11 | 2false 375 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
| 13 | 8nn 12230 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 14 | nnrp 12912 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
| 16 | 0le2 12237 | . . . . 5 ⊢ 0 ≤ 2 | |
| 17 | 2lt8 12327 | . . . . 5 ⊢ 2 < 8 | |
| 18 | modid 13810 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
| 19 | 7, 15, 16, 17, 18 | mp4an 693 | . . . 4 ⊢ (2 mod 8) = 2 |
| 20 | 19 | eleq1i 2824 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
| 21 | 2ex 12212 | . . . 4 ⊢ 2 ∈ V | |
| 22 | 21 | elpr 4602 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
| 23 | 20, 22 | bitr2i 276 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
| 24 | 2, 12, 23 | 3bitri 297 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {cpr 4579 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 0cc0 11016 1c1 11017 < clt 11156 ≤ cle 11157 ℕcn 12135 2c2 12190 7c7 12195 8c8 12196 ℝ+crp 12900 mod cmo 13783 /L clgs 27242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-dju 9804 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-n0 12392 df-xnn0 12465 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-dvds 16174 df-gcd 16416 df-prm 16593 df-phi 16687 df-pc 16759 df-lgs 27243 |
| This theorem is referenced by: 2lgs 27355 |
| Copyright terms: Public domain | W3C validator |