| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for 2lgs 27387: special case of 2lgs 27387 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgs2 27385 | . . 3 ⊢ (2 /L 2) = 0 | |
| 2 | 1 | eqeq1i 2739 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
| 3 | 0ne1 12319 | . . . 4 ⊢ 0 ≠ 1 | |
| 4 | 3 | neii 2933 | . . 3 ⊢ ¬ 0 = 1 |
| 5 | 1ne2 12456 | . . . . 5 ⊢ 1 ≠ 2 | |
| 6 | 5 | nesymi 2988 | . . . 4 ⊢ ¬ 2 = 1 |
| 7 | 2re 12322 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt7 12438 | . . . . . 6 ⊢ 2 < 7 | |
| 9 | 7, 8 | ltneii 11356 | . . . . 5 ⊢ 2 ≠ 7 |
| 10 | 9 | neii 2933 | . . . 4 ⊢ ¬ 2 = 7 |
| 11 | 6, 10 | pm3.2ni 880 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
| 12 | 4, 11 | 2false 375 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
| 13 | 8nn 12343 | . . . . . 6 ⊢ 8 ∈ ℕ | |
| 14 | nnrp 13028 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
| 16 | 0le2 12350 | . . . . 5 ⊢ 0 ≤ 2 | |
| 17 | 2lt8 12445 | . . . . 5 ⊢ 2 < 8 | |
| 18 | modid 13918 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
| 19 | 7, 15, 16, 17, 18 | mp4an 693 | . . . 4 ⊢ (2 mod 8) = 2 |
| 20 | 19 | eleq1i 2824 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
| 21 | 2ex 12325 | . . . 4 ⊢ 2 ∈ V | |
| 22 | 21 | elpr 4630 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
| 23 | 20, 22 | bitr2i 276 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
| 24 | 2, 12, 23 | 3bitri 297 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 {cpr 4608 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 < clt 11277 ≤ cle 11278 ℕcn 12248 2c2 12303 7c7 12308 8c8 12309 ℝ+crp 13016 mod cmo 13891 /L clgs 27274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-dvds 16273 df-gcd 16514 df-prm 16691 df-phi 16785 df-pc 16857 df-lgs 27275 |
| This theorem is referenced by: 2lgs 27387 |
| Copyright terms: Public domain | W3C validator |