Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6078 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 5645 | . 2 ⊢ Rel ∅ | |
3 | br0 5084 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
4 | 3 | intnanr 491 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
5 | 4 | nex 1802 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
6 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3413 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opelco 5716 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 5, 8 | mtbir 326 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
10 | noel 4232 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 9, 10 | 2false 379 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
12 | 1, 2, 11 | eqrelriiv 5636 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∅c0 4227 〈cop 4531 class class class wbr 5035 ∘ ccom 5531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-co 5536 |
This theorem is referenced by: co01 6095 relexpsucld 14446 gsumwmhm 18081 frmdgsum 18098 frmdup1 18100 efginvrel2 18925 0frgp 18977 evl1fval 21052 utop2nei 22956 tngds 23355 tocycf 30914 tocyc01 30915 mrsub0 32998 dfpo2 33242 cononrel1 40695 |
Copyright terms: Public domain | W3C validator |