| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6095 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 5778 | . 2 ⊢ Rel ∅ | |
| 3 | br0 5168 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
| 4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 5 | 4 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 6 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opelco 5851 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 10 | noel 4313 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 12 | 1, 2, 11 | eqrelriiv 5769 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 〈cop 4607 class class class wbr 5119 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-co 5663 |
| This theorem is referenced by: co01 6250 dfpo2 6285 relexpsucld 15053 gsumwmhm 18823 frmdgsum 18840 frmdup1 18842 efginvrel2 19708 0frgp 19760 evl1fval 22266 utop2nei 24189 tngds 24587 tocycf 33128 tocyc01 33129 1arithidom 33552 mrsub0 35538 cononrel1 43618 |
| Copyright terms: Public domain | W3C validator |