![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6108 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 5800 | . 2 ⊢ Rel ∅ | |
3 | br0 5198 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
4 | 3 | intnanr 489 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
5 | 4 | nex 1803 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
6 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3479 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opelco 5872 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) |
10 | noel 4331 | . . 3 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
11 | 9, 10 | 2false 376 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) |
12 | 1, 2, 11 | eqrelriiv 5791 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∅c0 4323 ⟨cop 4635 class class class wbr 5149 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-co 5686 |
This theorem is referenced by: co01 6261 dfpo2 6296 relexpsucld 14981 gsumwmhm 18726 frmdgsum 18743 frmdup1 18745 efginvrel2 19595 0frgp 19647 evl1fval 21847 utop2nei 23755 tngds 24164 tngdsOLD 24165 tocycf 32276 tocyc01 32277 mrsub0 34507 cononrel1 42345 |
Copyright terms: Public domain | W3C validator |