MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   GIF version

Theorem co02 6249
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6095 . 2 Rel (𝐴 ∘ ∅)
2 rel0 5778 . 2 Rel ∅
3 br0 5168 . . . . . 6 ¬ 𝑥𝑧
43intnanr 487 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
54nex 1800 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
6 vex 3463 . . . . 5 𝑥 ∈ V
7 vex 3463 . . . . 5 𝑦 ∈ V
86, 7opelco 5851 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
95, 8mtbir 323 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
10 noel 4313 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
119, 102false 375 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
121, 2, 11eqrelriiv 5769 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  c0 4308  cop 4607   class class class wbr 5119  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-co 5663
This theorem is referenced by:  co01  6250  dfpo2  6285  relexpsucld  15053  gsumwmhm  18823  frmdgsum  18840  frmdup1  18842  efginvrel2  19708  0frgp  19760  evl1fval  22266  utop2nei  24189  tngds  24587  tocycf  33128  tocyc01  33129  1arithidom  33552  mrsub0  35538  cononrel1  43618
  Copyright terms: Public domain W3C validator