MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   GIF version

Theorem co02 6221
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6068 . 2 Rel (𝐴 ∘ ∅)
2 rel0 5753 . 2 Rel ∅
3 br0 5151 . . . . . 6 ¬ 𝑥𝑧
43intnanr 487 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
54nex 1800 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
6 vex 3448 . . . . 5 𝑥 ∈ V
7 vex 3448 . . . . 5 𝑦 ∈ V
86, 7opelco 5825 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
95, 8mtbir 323 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
10 noel 4297 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
119, 102false 375 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
121, 2, 11eqrelriiv 5744 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4292  cop 4591   class class class wbr 5102  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-co 5640
This theorem is referenced by:  co01  6222  dfpo2  6257  relexpsucld  14976  gsumwmhm  18748  frmdgsum  18765  frmdup1  18767  efginvrel2  19633  0frgp  19685  evl1fval  22191  utop2nei  24114  tngds  24512  tocycf  33047  tocyc01  33048  1arithidom  33481  mrsub0  35476  cononrel1  43556
  Copyright terms: Public domain W3C validator