| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6068 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 5753 | . 2 ⊢ Rel ∅ | |
| 3 | br0 5151 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
| 4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 5 | 4 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 6 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opelco 5825 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 10 | noel 4297 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 12 | 1, 2, 11 | eqrelriiv 5744 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4292 〈cop 4591 class class class wbr 5102 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-co 5640 |
| This theorem is referenced by: co01 6222 dfpo2 6257 relexpsucld 14976 gsumwmhm 18748 frmdgsum 18765 frmdup1 18767 efginvrel2 19633 0frgp 19685 evl1fval 22191 utop2nei 24114 tngds 24512 tocycf 33047 tocyc01 33048 1arithidom 33481 mrsub0 35476 cononrel1 43556 |
| Copyright terms: Public domain | W3C validator |