Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6137 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 5698 | . 2 ⊢ Rel ∅ | |
3 | br0 5119 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
5 | 4 | nex 1804 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
6 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opelco 5769 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 5, 8 | mtbir 322 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
10 | noel 4261 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
12 | 1, 2, 11 | eqrelriiv 5689 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∅c0 4253 〈cop 4564 class class class wbr 5070 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-co 5589 |
This theorem is referenced by: co01 6154 dfpo2 6188 relexpsucld 14673 gsumwmhm 18399 frmdgsum 18416 frmdup1 18418 efginvrel2 19248 0frgp 19300 evl1fval 21404 utop2nei 23310 tngds 23717 tngdsOLD 23718 tocycf 31286 tocyc01 31287 mrsub0 33378 cononrel1 41091 |
Copyright terms: Public domain | W3C validator |