MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   GIF version

Theorem co02 6209
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6059 . 2 Rel (𝐴 ∘ ∅)
2 rel0 5742 . 2 Rel ∅
3 br0 5141 . . . . . 6 ¬ 𝑥𝑧
43intnanr 487 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
54nex 1800 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
6 vex 3440 . . . . 5 𝑥 ∈ V
7 vex 3440 . . . . 5 𝑦 ∈ V
86, 7opelco 5814 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
95, 8mtbir 323 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
10 noel 4289 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
119, 102false 375 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
121, 2, 11eqrelriiv 5733 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4284  cop 4583   class class class wbr 5092  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-co 5628
This theorem is referenced by:  co01  6210  dfpo2  6244  relexpsucld  14941  gsumwmhm  18719  frmdgsum  18736  frmdup1  18738  efginvrel2  19606  0frgp  19658  evl1fval  22213  utop2nei  24136  tngds  24534  tocycf  33059  tocyc01  33060  1arithidom  33474  mrsub0  35489  cononrel1  43567
  Copyright terms: Public domain W3C validator