| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6059 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 5742 | . 2 ⊢ Rel ∅ | |
| 3 | br0 5141 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
| 4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 5 | 4 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 6 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opelco 5814 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 10 | noel 4289 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 12 | 1, 2, 11 | eqrelriiv 5733 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4284 〈cop 4583 class class class wbr 5092 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-co 5628 |
| This theorem is referenced by: co01 6210 dfpo2 6244 relexpsucld 14941 gsumwmhm 18719 frmdgsum 18736 frmdup1 18738 efginvrel2 19606 0frgp 19658 evl1fval 22213 utop2nei 24136 tngds 24534 tocycf 33059 tocyc01 33060 1arithidom 33474 mrsub0 35489 cononrel1 43567 |
| Copyright terms: Public domain | W3C validator |