![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6138 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 5823 | . 2 ⊢ Rel ∅ | |
3 | br0 5215 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
5 | 4 | nex 1798 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
6 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opelco 5896 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
10 | noel 4360 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
12 | 1, 2, 11 | eqrelriiv 5814 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 〈cop 4654 class class class wbr 5166 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-co 5709 |
This theorem is referenced by: co01 6292 dfpo2 6327 relexpsucld 15083 gsumwmhm 18880 frmdgsum 18897 frmdup1 18899 efginvrel2 19769 0frgp 19821 evl1fval 22353 utop2nei 24280 tngds 24689 tngdsOLD 24690 tocycf 33110 tocyc01 33111 1arithidom 33530 mrsub0 35484 cononrel1 43556 |
Copyright terms: Public domain | W3C validator |