| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6079 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 5762 | . 2 ⊢ Rel ∅ | |
| 3 | br0 5156 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
| 4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 5 | 4 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 6 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opelco 5835 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 10 | noel 4301 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 12 | 1, 2, 11 | eqrelriiv 5753 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4296 〈cop 4595 class class class wbr 5107 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-co 5647 |
| This theorem is referenced by: co01 6234 dfpo2 6269 relexpsucld 15000 gsumwmhm 18772 frmdgsum 18789 frmdup1 18791 efginvrel2 19657 0frgp 19709 evl1fval 22215 utop2nei 24138 tngds 24536 tocycf 33074 tocyc01 33075 1arithidom 33508 mrsub0 35503 cononrel1 43583 |
| Copyright terms: Public domain | W3C validator |