MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   GIF version

Theorem co02 6233
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6079 . 2 Rel (𝐴 ∘ ∅)
2 rel0 5762 . 2 Rel ∅
3 br0 5156 . . . . . 6 ¬ 𝑥𝑧
43intnanr 487 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
54nex 1800 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
6 vex 3451 . . . . 5 𝑥 ∈ V
7 vex 3451 . . . . 5 𝑦 ∈ V
86, 7opelco 5835 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
95, 8mtbir 323 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
10 noel 4301 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
119, 102false 375 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
121, 2, 11eqrelriiv 5753 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4296  cop 4595   class class class wbr 5107  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-co 5647
This theorem is referenced by:  co01  6234  dfpo2  6269  relexpsucld  15000  gsumwmhm  18772  frmdgsum  18789  frmdup1  18791  efginvrel2  19657  0frgp  19709  evl1fval  22215  utop2nei  24138  tngds  24536  tocycf  33074  tocyc01  33075  1arithidom  33508  mrsub0  35503  cononrel1  43583
  Copyright terms: Public domain W3C validator