MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   GIF version

Theorem co02 6291
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02 (𝐴 ∘ ∅) = ∅

Proof of Theorem co02
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6138 . 2 Rel (𝐴 ∘ ∅)
2 rel0 5823 . 2 Rel ∅
3 br0 5215 . . . . . 6 ¬ 𝑥𝑧
43intnanr 487 . . . . 5 ¬ (𝑥𝑧𝑧𝐴𝑦)
54nex 1798 . . . 4 ¬ ∃𝑧(𝑥𝑧𝑧𝐴𝑦)
6 vex 3492 . . . . 5 𝑥 ∈ V
7 vex 3492 . . . . 5 𝑦 ∈ V
86, 7opelco 5896 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥𝑧𝑧𝐴𝑦))
95, 8mtbir 323 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅)
10 noel 4360 . . 3 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
119, 102false 375 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ ∅) ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
121, 2, 11eqrelriiv 5814 1 (𝐴 ∘ ∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  c0 4352  cop 4654   class class class wbr 5166  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-co 5709
This theorem is referenced by:  co01  6292  dfpo2  6327  relexpsucld  15083  gsumwmhm  18880  frmdgsum  18897  frmdup1  18899  efginvrel2  19769  0frgp  19821  evl1fval  22353  utop2nei  24280  tngds  24689  tngdsOLD  24690  tocycf  33110  tocyc01  33111  1arithidom  33530  mrsub0  35484  cononrel1  43556
  Copyright terms: Public domain W3C validator