| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version | ||
| Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6082 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
| 2 | rel0 5765 | . 2 ⊢ Rel ∅ | |
| 3 | br0 5159 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
| 4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 5 | 4 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
| 6 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | opelco 5838 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
| 9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
| 10 | noel 4304 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 12 | 1, 2, 11 | eqrelriiv 5756 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 〈cop 4598 class class class wbr 5110 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-co 5650 |
| This theorem is referenced by: co01 6237 dfpo2 6272 relexpsucld 15007 gsumwmhm 18779 frmdgsum 18796 frmdup1 18798 efginvrel2 19664 0frgp 19716 evl1fval 22222 utop2nei 24145 tngds 24543 tocycf 33081 tocyc01 33082 1arithidom 33515 mrsub0 35510 cononrel1 43590 |
| Copyright terms: Public domain | W3C validator |