![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > co02 | Structured version Visualization version GIF version |
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
co02 | ⊢ (𝐴 ∘ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6129 | . 2 ⊢ Rel (𝐴 ∘ ∅) | |
2 | rel0 5812 | . 2 ⊢ Rel ∅ | |
3 | br0 5197 | . . . . . 6 ⊢ ¬ 𝑥∅𝑧 | |
4 | 3 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
5 | 4 | nex 1797 | . . . 4 ⊢ ¬ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦) |
6 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opelco 5885 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ ∃𝑧(𝑥∅𝑧 ∧ 𝑧𝐴𝑦)) |
9 | 5, 8 | mtbir 323 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) |
10 | noel 4344 | . . 3 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
11 | 9, 10 | 2false 375 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ ∅) ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
12 | 1, 2, 11 | eqrelriiv 5803 | 1 ⊢ (𝐴 ∘ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∅c0 4339 〈cop 4637 class class class wbr 5148 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-co 5698 |
This theorem is referenced by: co01 6283 dfpo2 6318 relexpsucld 15070 gsumwmhm 18871 frmdgsum 18888 frmdup1 18890 efginvrel2 19760 0frgp 19812 evl1fval 22348 utop2nei 24275 tngds 24684 tngdsOLD 24685 tocycf 33120 tocyc01 33121 1arithidom 33545 mrsub0 35501 cononrel1 43584 |
Copyright terms: Public domain | W3C validator |