Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   GIF version

Theorem signswch 34593
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswch ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 4604 . . . . . 6 {-1, 1} = ({-1} ∪ {1})
2 snsstp1 4792 . . . . . . 7 {-1} ⊆ {-1, 0, 1}
3 snsstp3 4794 . . . . . . 7 {1} ⊆ {-1, 0, 1}
42, 3unssi 4166 . . . . . 6 ({-1} ∪ {1}) ⊆ {-1, 0, 1}
51, 4eqsstri 4005 . . . . 5 {-1, 1} ⊆ {-1, 0, 1}
65sseli 3954 . . . 4 (𝑋 ∈ {-1, 1} → 𝑋 ∈ {-1, 0, 1})
7 signsw.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
87signspval 34584 . . . 4 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
96, 8sylan 580 . . 3 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
109neeq1d 2991 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
11 neeq1 2994 . . . 4 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1211bibi1d 343 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑋𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
13 neeq1 2994 . . . 4 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1413bibi1d 343 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
15 neirr 2941 . . . . 5 ¬ 𝑋𝑋
1615a1i 11 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ 𝑋𝑋)
17 0re 11237 . . . . . 6 0 ∈ ℝ
1817ltnri 11344 . . . . 5 ¬ 0 < 0
19 simpr 484 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑌 = 0)
2019oveq2d 7421 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
21 neg1cn 12354 . . . . . . . . . 10 -1 ∈ ℂ
22 ax-1cn 11187 . . . . . . . . . 10 1 ∈ ℂ
23 prssi 4797 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
2421, 22, 23mp2an 692 . . . . . . . . 9 {-1, 1} ⊆ ℂ
25 simpll 766 . . . . . . . . 9 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ {-1, 1})
2624, 25sselid 3956 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
2726mul01d 11434 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
2820, 27eqtrd 2770 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = 0)
2928breq1d 5129 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ((𝑋 · 𝑌) < 0 ↔ 0 < 0))
3018, 29mtbiri 327 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ (𝑋 · 𝑌) < 0)
3116, 302falsed 376 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋𝑋 ↔ (𝑋 · 𝑌) < 0))
32 simplr 768 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 0, 1})
33 tpcomb 4727 . . . . . . . 8 {-1, 0, 1} = {-1, 1, 0}
3432, 33eleqtrdi 2844 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1, 0})
35 simpr 484 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
3635neqned 2939 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
3734, 36jca 511 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
38 eldifsn 4762 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
39 neg1ne0 12356 . . . . . . . . 9 -1 ≠ 0
40 ax-1ne0 11198 . . . . . . . . 9 1 ≠ 0
41 diftpsn3 4778 . . . . . . . . 9 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
4239, 40, 41mp2an 692 . . . . . . . 8 ({-1, 1, 0} ∖ {0}) = {-1, 1}
4342eleq2i 2826 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ 𝑌 ∈ {-1, 1})
4438, 43bitr3i 277 . . . . . 6 ((𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0) ↔ 𝑌 ∈ {-1, 1})
4537, 44sylib 218 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1})
46 neirr 2941 . . . . . . . . . . 11 ¬ -1 ≠ -1
47 0le1 11760 . . . . . . . . . . . . 13 0 ≤ 1
48 1re 11235 . . . . . . . . . . . . . 14 1 ∈ ℝ
4917, 48lenlti 11355 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ ¬ 1 < 0)
5047, 49mpbi 230 . . . . . . . . . . . 12 ¬ 1 < 0
51 neg1mulneg1e1 12453 . . . . . . . . . . . . 13 (-1 · -1) = 1
5251breq1i 5126 . . . . . . . . . . . 12 ((-1 · -1) < 0 ↔ 1 < 0)
5350, 52mtbir 323 . . . . . . . . . . 11 ¬ (-1 · -1) < 0
5446, 532false 375 . . . . . . . . . 10 (-1 ≠ -1 ↔ (-1 · -1) < 0)
55 neeq1 2994 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ -1 ↔ -1 ≠ -1))
56 oveq2 7413 . . . . . . . . . . . 12 (𝑌 = -1 → (-1 · 𝑌) = (-1 · -1))
5756breq1d 5129 . . . . . . . . . . 11 (𝑌 = -1 → ((-1 · 𝑌) < 0 ↔ (-1 · -1) < 0))
5855, 57bibi12d 345 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (-1 ≠ -1 ↔ (-1 · -1) < 0)))
5954, 58mpbiri 258 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
6059adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
61 neg1rr 12355 . . . . . . . . . . . 12 -1 ∈ ℝ
62 neg1lt0 12357 . . . . . . . . . . . . 13 -1 < 0
63 0lt1 11759 . . . . . . . . . . . . 13 0 < 1
6461, 17, 48lttri 11361 . . . . . . . . . . . . 13 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
6562, 63, 64mp2an 692 . . . . . . . . . . . 12 -1 < 1
6661, 65gtneii 11347 . . . . . . . . . . 11 1 ≠ -1
6721mulridi 11239 . . . . . . . . . . . 12 (-1 · 1) = -1
6867, 62eqbrtri 5140 . . . . . . . . . . 11 (-1 · 1) < 0
6966, 682th 264 . . . . . . . . . 10 (1 ≠ -1 ↔ (-1 · 1) < 0)
70 neeq1 2994 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ -1 ↔ 1 ≠ -1))
71 oveq2 7413 . . . . . . . . . . . 12 (𝑌 = 1 → (-1 · 𝑌) = (-1 · 1))
7271breq1d 5129 . . . . . . . . . . 11 (𝑌 = 1 → ((-1 · 𝑌) < 0 ↔ (-1 · 1) < 0))
7370, 72bibi12d 345 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (1 ≠ -1 ↔ (-1 · 1) < 0)))
7469, 73mpbiri 258 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7574adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
76 elpri 4625 . . . . . . . 8 (𝑌 ∈ {-1, 1} → (𝑌 = -1 ∨ 𝑌 = 1))
7760, 75, 76mpjaodan 960 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7877adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
79 neeq2 2995 . . . . . . . 8 (𝑋 = -1 → (𝑌𝑋𝑌 ≠ -1))
80 oveq1 7412 . . . . . . . . 9 (𝑋 = -1 → (𝑋 · 𝑌) = (-1 · 𝑌))
8180breq1d 5129 . . . . . . . 8 (𝑋 = -1 → ((𝑋 · 𝑌) < 0 ↔ (-1 · 𝑌) < 0))
8279, 81bibi12d 345 . . . . . . 7 (𝑋 = -1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8382adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8478, 83mpbird 257 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8545, 84sylan 580 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8666necomi 2986 . . . . . . . . . . 11 -1 ≠ 1
8721, 22mulcomi 11243 . . . . . . . . . . . . 13 (-1 · 1) = (1 · -1)
8887breq1i 5126 . . . . . . . . . . . 12 ((-1 · 1) < 0 ↔ (1 · -1) < 0)
8968, 88mpbi 230 . . . . . . . . . . 11 (1 · -1) < 0
9086, 892th 264 . . . . . . . . . 10 (-1 ≠ 1 ↔ (1 · -1) < 0)
91 neeq1 2994 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ 1 ↔ -1 ≠ 1))
92 oveq2 7413 . . . . . . . . . . . 12 (𝑌 = -1 → (1 · 𝑌) = (1 · -1))
9392breq1d 5129 . . . . . . . . . . 11 (𝑌 = -1 → ((1 · 𝑌) < 0 ↔ (1 · -1) < 0))
9491, 93bibi12d 345 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (-1 ≠ 1 ↔ (1 · -1) < 0)))
9590, 94mpbiri 258 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
9695adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
97 neirr 2941 . . . . . . . . . . 11 ¬ 1 ≠ 1
9822mulridi 11239 . . . . . . . . . . . . 13 (1 · 1) = 1
9998breq1i 5126 . . . . . . . . . . . 12 ((1 · 1) < 0 ↔ 1 < 0)
10050, 99mtbir 323 . . . . . . . . . . 11 ¬ (1 · 1) < 0
10197, 1002false 375 . . . . . . . . . 10 (1 ≠ 1 ↔ (1 · 1) < 0)
102 neeq1 2994 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ 1 ↔ 1 ≠ 1))
103 oveq2 7413 . . . . . . . . . . . 12 (𝑌 = 1 → (1 · 𝑌) = (1 · 1))
104103breq1d 5129 . . . . . . . . . . 11 (𝑌 = 1 → ((1 · 𝑌) < 0 ↔ (1 · 1) < 0))
105102, 104bibi12d 345 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (1 ≠ 1 ↔ (1 · 1) < 0)))
106101, 105mpbiri 258 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
107106adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
10896, 107, 76mpjaodan 960 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
109108adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
110 neeq2 2995 . . . . . . . 8 (𝑋 = 1 → (𝑌𝑋𝑌 ≠ 1))
111 oveq1 7412 . . . . . . . . 9 (𝑋 = 1 → (𝑋 · 𝑌) = (1 · 𝑌))
112111breq1d 5129 . . . . . . . 8 (𝑋 = 1 → ((𝑋 · 𝑌) < 0 ↔ (1 · 𝑌) < 0))
113110, 112bibi12d 345 . . . . . . 7 (𝑋 = 1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
114113adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
115109, 114mpbird 257 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
11645, 115sylan 580 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
117 elpri 4625 . . . . 5 (𝑋 ∈ {-1, 1} → (𝑋 = -1 ∨ 𝑋 = 1))
118117ad2antrr 726 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑋 = -1 ∨ 𝑋 = 1))
11985, 116, 118mpjaodan 960 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
12012, 14, 31, 119ifbothda 4539 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
12110, 120bitrd 279 1 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  wss 3926  ifcif 4500  {csn 4601  {cpr 4603  {ctp 4605  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  cmpo 7407  cc 11127  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  -cneg 11467  ndxcnx 17212  Basecbs 17228  +gcplusg 17271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469
This theorem is referenced by:  signsvfn  34614
  Copyright terms: Public domain W3C validator