Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswch Structured version   Visualization version   GIF version

Theorem signswch 32519
Description: The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswch ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Distinct variable groups:   𝑎,𝑏,𝑋   𝑌,𝑎,𝑏
Allowed substitution hints:   (𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem signswch
StepHypRef Expression
1 df-pr 4569 . . . . . 6 {-1, 1} = ({-1} ∪ {1})
2 snsstp1 4754 . . . . . . 7 {-1} ⊆ {-1, 0, 1}
3 snsstp3 4756 . . . . . . 7 {1} ⊆ {-1, 0, 1}
42, 3unssi 4123 . . . . . 6 ({-1} ∪ {1}) ⊆ {-1, 0, 1}
51, 4eqsstri 3959 . . . . 5 {-1, 1} ⊆ {-1, 0, 1}
65sseli 3921 . . . 4 (𝑋 ∈ {-1, 1} → 𝑋 ∈ {-1, 0, 1})
7 signsw.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
87signspval 32510 . . . 4 ((𝑋 ∈ {-1, 0, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
96, 8sylan 579 . . 3 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (𝑋 𝑌) = if(𝑌 = 0, 𝑋, 𝑌))
109neeq1d 3004 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
11 neeq1 3007 . . . 4 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑋𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1211bibi1d 343 . . 3 (𝑋 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑋𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
13 neeq1 3007 . . . 4 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → (𝑌𝑋 ↔ if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋))
1413bibi1d 343 . . 3 (𝑌 = if(𝑌 = 0, 𝑋, 𝑌) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0)))
15 neirr 2953 . . . . 5 ¬ 𝑋𝑋
1615a1i 11 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ 𝑋𝑋)
17 0re 10961 . . . . . 6 0 ∈ ℝ
1817ltnri 11067 . . . . 5 ¬ 0 < 0
19 simpr 484 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑌 = 0)
2019oveq2d 7284 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
21 neg1cn 12070 . . . . . . . . . 10 -1 ∈ ℂ
22 ax-1cn 10913 . . . . . . . . . 10 1 ∈ ℂ
23 prssi 4759 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
2421, 22, 23mp2an 688 . . . . . . . . 9 {-1, 1} ⊆ ℂ
25 simpll 763 . . . . . . . . 9 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ {-1, 1})
2624, 25sselid 3923 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
2726mul01d 11157 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
2820, 27eqtrd 2779 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = 0)
2928breq1d 5088 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ((𝑋 · 𝑌) < 0 ↔ 0 < 0))
3018, 29mtbiri 326 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → ¬ (𝑋 · 𝑌) < 0)
3116, 302falsed 376 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ 𝑌 = 0) → (𝑋𝑋 ↔ (𝑋 · 𝑌) < 0))
32 simplr 765 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 0, 1})
33 tpcomb 4692 . . . . . . . 8 {-1, 0, 1} = {-1, 1, 0}
3432, 33eleqtrdi 2850 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1, 0})
35 simpr 484 . . . . . . . 8 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → ¬ 𝑌 = 0)
3635neqned 2951 . . . . . . 7 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
3734, 36jca 511 . . . . . 6 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
38 eldifsn 4725 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ (𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0))
39 neg1ne0 12072 . . . . . . . . 9 -1 ≠ 0
40 ax-1ne0 10924 . . . . . . . . 9 1 ≠ 0
41 diftpsn3 4740 . . . . . . . . 9 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
4239, 40, 41mp2an 688 . . . . . . . 8 ({-1, 1, 0} ∖ {0}) = {-1, 1}
4342eleq2i 2831 . . . . . . 7 (𝑌 ∈ ({-1, 1, 0} ∖ {0}) ↔ 𝑌 ∈ {-1, 1})
4438, 43bitr3i 276 . . . . . 6 ((𝑌 ∈ {-1, 1, 0} ∧ 𝑌 ≠ 0) ↔ 𝑌 ∈ {-1, 1})
4537, 44sylib 217 . . . . 5 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → 𝑌 ∈ {-1, 1})
46 neirr 2953 . . . . . . . . . . 11 ¬ -1 ≠ -1
47 0le1 11481 . . . . . . . . . . . . 13 0 ≤ 1
48 1re 10959 . . . . . . . . . . . . . 14 1 ∈ ℝ
4917, 48lenlti 11078 . . . . . . . . . . . . 13 (0 ≤ 1 ↔ ¬ 1 < 0)
5047, 49mpbi 229 . . . . . . . . . . . 12 ¬ 1 < 0
51 neg1mulneg1e1 12169 . . . . . . . . . . . . 13 (-1 · -1) = 1
5251breq1i 5085 . . . . . . . . . . . 12 ((-1 · -1) < 0 ↔ 1 < 0)
5350, 52mtbir 322 . . . . . . . . . . 11 ¬ (-1 · -1) < 0
5446, 532false 375 . . . . . . . . . 10 (-1 ≠ -1 ↔ (-1 · -1) < 0)
55 neeq1 3007 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ -1 ↔ -1 ≠ -1))
56 oveq2 7276 . . . . . . . . . . . 12 (𝑌 = -1 → (-1 · 𝑌) = (-1 · -1))
5756breq1d 5088 . . . . . . . . . . 11 (𝑌 = -1 → ((-1 · 𝑌) < 0 ↔ (-1 · -1) < 0))
5855, 57bibi12d 345 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (-1 ≠ -1 ↔ (-1 · -1) < 0)))
5954, 58mpbiri 257 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
6059adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
61 neg1rr 12071 . . . . . . . . . . . 12 -1 ∈ ℝ
62 neg1lt0 12073 . . . . . . . . . . . . 13 -1 < 0
63 0lt1 11480 . . . . . . . . . . . . 13 0 < 1
6461, 17, 48lttri 11084 . . . . . . . . . . . . 13 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
6562, 63, 64mp2an 688 . . . . . . . . . . . 12 -1 < 1
6661, 65gtneii 11070 . . . . . . . . . . 11 1 ≠ -1
6721mulid1i 10963 . . . . . . . . . . . 12 (-1 · 1) = -1
6867, 62eqbrtri 5099 . . . . . . . . . . 11 (-1 · 1) < 0
6966, 682th 263 . . . . . . . . . 10 (1 ≠ -1 ↔ (-1 · 1) < 0)
70 neeq1 3007 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ -1 ↔ 1 ≠ -1))
71 oveq2 7276 . . . . . . . . . . . 12 (𝑌 = 1 → (-1 · 𝑌) = (-1 · 1))
7271breq1d 5088 . . . . . . . . . . 11 (𝑌 = 1 → ((-1 · 𝑌) < 0 ↔ (-1 · 1) < 0))
7370, 72bibi12d 345 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0) ↔ (1 ≠ -1 ↔ (-1 · 1) < 0)))
7469, 73mpbiri 257 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7574adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
76 elpri 4588 . . . . . . . 8 (𝑌 ∈ {-1, 1} → (𝑌 = -1 ∨ 𝑌 = 1))
7760, 75, 76mpjaodan 955 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
7877adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0))
79 neeq2 3008 . . . . . . . 8 (𝑋 = -1 → (𝑌𝑋𝑌 ≠ -1))
80 oveq1 7275 . . . . . . . . 9 (𝑋 = -1 → (𝑋 · 𝑌) = (-1 · 𝑌))
8180breq1d 5088 . . . . . . . 8 (𝑋 = -1 → ((𝑋 · 𝑌) < 0 ↔ (-1 · 𝑌) < 0))
8279, 81bibi12d 345 . . . . . . 7 (𝑋 = -1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8382adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ -1 ↔ (-1 · 𝑌) < 0)))
8478, 83mpbird 256 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8545, 84sylan 579 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = -1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
8666necomi 2999 . . . . . . . . . . 11 -1 ≠ 1
8721, 22mulcomi 10967 . . . . . . . . . . . . 13 (-1 · 1) = (1 · -1)
8887breq1i 5085 . . . . . . . . . . . 12 ((-1 · 1) < 0 ↔ (1 · -1) < 0)
8968, 88mpbi 229 . . . . . . . . . . 11 (1 · -1) < 0
9086, 892th 263 . . . . . . . . . 10 (-1 ≠ 1 ↔ (1 · -1) < 0)
91 neeq1 3007 . . . . . . . . . . 11 (𝑌 = -1 → (𝑌 ≠ 1 ↔ -1 ≠ 1))
92 oveq2 7276 . . . . . . . . . . . 12 (𝑌 = -1 → (1 · 𝑌) = (1 · -1))
9392breq1d 5088 . . . . . . . . . . 11 (𝑌 = -1 → ((1 · 𝑌) < 0 ↔ (1 · -1) < 0))
9491, 93bibi12d 345 . . . . . . . . . 10 (𝑌 = -1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (-1 ≠ 1 ↔ (1 · -1) < 0)))
9590, 94mpbiri 257 . . . . . . . . 9 (𝑌 = -1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
9695adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = -1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
97 neirr 2953 . . . . . . . . . . 11 ¬ 1 ≠ 1
9822mulid1i 10963 . . . . . . . . . . . . 13 (1 · 1) = 1
9998breq1i 5085 . . . . . . . . . . . 12 ((1 · 1) < 0 ↔ 1 < 0)
10050, 99mtbir 322 . . . . . . . . . . 11 ¬ (1 · 1) < 0
10197, 1002false 375 . . . . . . . . . 10 (1 ≠ 1 ↔ (1 · 1) < 0)
102 neeq1 3007 . . . . . . . . . . 11 (𝑌 = 1 → (𝑌 ≠ 1 ↔ 1 ≠ 1))
103 oveq2 7276 . . . . . . . . . . . 12 (𝑌 = 1 → (1 · 𝑌) = (1 · 1))
104103breq1d 5088 . . . . . . . . . . 11 (𝑌 = 1 → ((1 · 𝑌) < 0 ↔ (1 · 1) < 0))
105102, 104bibi12d 345 . . . . . . . . . 10 (𝑌 = 1 → ((𝑌 ≠ 1 ↔ (1 · 𝑌) < 0) ↔ (1 ≠ 1 ↔ (1 · 1) < 0)))
106101, 105mpbiri 257 . . . . . . . . 9 (𝑌 = 1 → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
107106adantl 481 . . . . . . . 8 ((𝑌 ∈ {-1, 1} ∧ 𝑌 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
10896, 107, 76mpjaodan 955 . . . . . . 7 (𝑌 ∈ {-1, 1} → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
109108adantr 480 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0))
110 neeq2 3008 . . . . . . . 8 (𝑋 = 1 → (𝑌𝑋𝑌 ≠ 1))
111 oveq1 7275 . . . . . . . . 9 (𝑋 = 1 → (𝑋 · 𝑌) = (1 · 𝑌))
112111breq1d 5088 . . . . . . . 8 (𝑋 = 1 → ((𝑋 · 𝑌) < 0 ↔ (1 · 𝑌) < 0))
113110, 112bibi12d 345 . . . . . . 7 (𝑋 = 1 → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
114113adantl 481 . . . . . 6 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → ((𝑌𝑋 ↔ (𝑋 · 𝑌) < 0) ↔ (𝑌 ≠ 1 ↔ (1 · 𝑌) < 0)))
115109, 114mpbird 256 . . . . 5 ((𝑌 ∈ {-1, 1} ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
11645, 115sylan 579 . . . 4 ((((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) ∧ 𝑋 = 1) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
117 elpri 4588 . . . . 5 (𝑋 ∈ {-1, 1} → (𝑋 = -1 ∨ 𝑋 = 1))
118117ad2antrr 722 . . . 4 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑋 = -1 ∨ 𝑋 = 1))
11985, 116, 118mpjaodan 955 . . 3 (((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) ∧ ¬ 𝑌 = 0) → (𝑌𝑋 ↔ (𝑋 · 𝑌) < 0))
12012, 14, 31, 119ifbothda 4502 . 2 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → (if(𝑌 = 0, 𝑋, 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
12110, 120bitrd 278 1 ((𝑋 ∈ {-1, 1} ∧ 𝑌 ∈ {-1, 0, 1}) → ((𝑋 𝑌) ≠ 𝑋 ↔ (𝑋 · 𝑌) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  cdif 3888  cun 3889  wss 3891  ifcif 4464  {csn 4566  {cpr 4568  {ctp 4570  cop 4572   class class class wbr 5078  cfv 6430  (class class class)co 7268  cmpo 7270  cc 10853  0cc0 10855  1c1 10856   · cmul 10860   < clt 10993  cle 10994  -cneg 11189  ndxcnx 16875  Basecbs 16893  +gcplusg 16943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191
This theorem is referenced by:  signsvfn  32540
  Copyright terms: Public domain W3C validator