Proof of Theorem 2if2
Step | Hyp | Ref
| Expression |
1 | | 2if2.1 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → 𝐷 = 𝐴) |
2 | | iftrue 4462 |
. . . 4
⊢ (𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴) |
3 | 2 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴) |
4 | 1, 3 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |
5 | | 2if2.2 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝜓 ∧ 𝜃) → 𝐷 = 𝐵) |
6 | 5 | 3expa 1116 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = 𝐵) |
7 | | iftrue 4462 |
. . . . . 6
⊢ (𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐵) |
8 | 7 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → if(𝜃, 𝐵, 𝐶) = 𝐵) |
9 | 6, 8 | eqtr4d 2781 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
10 | | 2if2.3 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶) |
11 | 10 | 3expa 1116 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = 𝐶) |
12 | | iffalse 4465 |
. . . . . . 7
⊢ (¬
𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐶) |
13 | 12 | eqcomd 2744 |
. . . . . 6
⊢ (¬
𝜃 → 𝐶 = if(𝜃, 𝐵, 𝐶)) |
14 | 13 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐶 = if(𝜃, 𝐵, 𝐶)) |
15 | 11, 14 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
16 | 9, 15 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜃, 𝐵, 𝐶)) |
17 | | iffalse 4465 |
. . . 4
⊢ (¬
𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶)) |
18 | 17 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶)) |
19 | 16, 18 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |
20 | 4, 19 | pm2.61dan 809 |
1
⊢ (𝜑 → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶))) |