MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2if2 Structured version   Visualization version   GIF version

Theorem 2if2 4519
Description: Resolve two nested conditionals. (Contributed by Alexander van der Vekens, 27-Mar-2018.)
Hypotheses
Ref Expression
2if2.1 ((𝜑𝜓) → 𝐷 = 𝐴)
2if2.2 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
2if2.3 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
Assertion
Ref Expression
2if2 (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))

Proof of Theorem 2if2
StepHypRef Expression
1 2if2.1 . . 3 ((𝜑𝜓) → 𝐷 = 𝐴)
2 iftrue 4472 . . . 4 (𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
32adantl 484 . . 3 ((𝜑𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = 𝐴)
41, 3eqtr4d 2859 . 2 ((𝜑𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
5 2if2.2 . . . . . 6 ((𝜑 ∧ ¬ 𝜓𝜃) → 𝐷 = 𝐵)
653expa 1114 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = 𝐵)
7 iftrue 4472 . . . . . 6 (𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐵)
87adantl 484 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → if(𝜃, 𝐵, 𝐶) = 𝐵)
96, 8eqtr4d 2859 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
10 2if2.3 . . . . . 6 ((𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃) → 𝐷 = 𝐶)
11103expa 1114 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = 𝐶)
12 iffalse 4475 . . . . . . 7 𝜃 → if(𝜃, 𝐵, 𝐶) = 𝐶)
1312eqcomd 2827 . . . . . 6 𝜃𝐶 = if(𝜃, 𝐵, 𝐶))
1413adantl 484 . . . . 5 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐶 = if(𝜃, 𝐵, 𝐶))
1511, 14eqtrd 2856 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜃) → 𝐷 = if(𝜃, 𝐵, 𝐶))
169, 15pm2.61dan 811 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜃, 𝐵, 𝐶))
17 iffalse 4475 . . . 4 𝜓 → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
1817adantl 484 . . 3 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)) = if(𝜃, 𝐵, 𝐶))
1916, 18eqtr4d 2859 . 2 ((𝜑 ∧ ¬ 𝜓) → 𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
204, 19pm2.61dan 811 1 (𝜑𝐷 = if(𝜓, 𝐴, if(𝜃, 𝐵, 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  ifcif 4466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-ex 1777  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-if 4467
This theorem is referenced by:  pfxccat3  14095  swrdccat  14096  swrdccat3b  14101
  Copyright terms: Public domain W3C validator