MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3b Structured version   Visualization version   GIF version

Theorem swrdccat3b 14635
Description: A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3b ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))

Proof of Theorem swrdccat3b
StepHypRef Expression
1 simpl 484 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 486 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝑀 ∈ (0...(𝐿 + (♯‘𝐵))))
3 elfzubelfz 13460 . . . . 5 (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
43adantl 483 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
5 swrdccatin2.l . . . . . 6 𝐿 = (♯‘𝐴)
65pfxccat3 14629 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))))))
76imp 408 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
81, 2, 4, 7syl12anc 836 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
95swrdccat3blem 14634 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
10 iftrue 4497 . . . . . 6 (𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
11103ad2ant3 1136 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
12 lencl 14428 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 12482 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
14 lencl 14428 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
1514nn0cnd 12482 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
165eqcomi 2746 . . . . . . . . . . . . 13 (♯‘𝐴) = 𝐿
1716eleq1i 2829 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℂ ↔ 𝐿 ∈ ℂ)
18 pncan2 11415 . . . . . . . . . . . 12 ((𝐿 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
1917, 18sylanb 582 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2013, 15, 19syl2an 597 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2120eqcomd 2743 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2221adantr 482 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
23223ad2ant1 1134 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2423opeq2d 4842 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)
2524oveq2d 7378 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
2611, 25eqtrd 2777 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
27 iffalse 4500 . . . . . 6 𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
28273ad2ant3 1136 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
2920adantr 482 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
30293ad2ant1 1134 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
3130oveq2d 7378 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)) = (𝐵 prefix (♯‘𝐵)))
32 pfxid 14579 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3332adantl 483 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3433adantr 482 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
35343ad2ant1 1134 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3631, 35eqtr2d 2778 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 = (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))
3736oveq2d 7378 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
3828, 37eqtrd 2777 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
399, 26, 382if2 4546 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
408, 39eqtr4d 2780 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)))
4140ex 414 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  ifcif 4491  cop 4597   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11056  0cc0 11058   + caddc 11061  cle 11197  cmin 11392  ...cfz 13431  chash 14237  Word cword 14409   ++ cconcat 14465   substr csubstr 14535   prefix cpfx 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-substr 14536  df-pfx 14566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator