MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3b Structured version   Visualization version   GIF version

Theorem swrdccat3b 14644
Description: A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3b ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))

Proof of Theorem swrdccat3b
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 484 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝑀 ∈ (0...(𝐿 + (♯‘𝐵))))
3 elfzubelfz 13433 . . . . 5 (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
43adantl 481 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
5 swrdccatin2.l . . . . . 6 𝐿 = (♯‘𝐴)
65pfxccat3 14638 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))))))
76imp 406 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
81, 2, 4, 7syl12anc 836 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
95swrdccat3blem 14643 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
10 iftrue 4481 . . . . . 6 (𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
11103ad2ant3 1135 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
12 lencl 14437 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 12441 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
14 lencl 14437 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
1514nn0cnd 12441 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
165eqcomi 2740 . . . . . . . . . . . . 13 (♯‘𝐴) = 𝐿
1716eleq1i 2822 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℂ ↔ 𝐿 ∈ ℂ)
18 pncan2 11364 . . . . . . . . . . . 12 ((𝐿 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
1917, 18sylanb 581 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2013, 15, 19syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2120eqcomd 2737 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2221adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
23223ad2ant1 1133 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2423opeq2d 4832 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)
2524oveq2d 7362 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
2611, 25eqtrd 2766 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
27 iffalse 4484 . . . . . 6 𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
28273ad2ant3 1135 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
2920adantr 480 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
30293ad2ant1 1133 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
3130oveq2d 7362 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)) = (𝐵 prefix (♯‘𝐵)))
32 pfxid 14589 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3332adantl 481 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3433adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
35343ad2ant1 1133 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3631, 35eqtr2d 2767 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 = (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))
3736oveq2d 7362 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
3828, 37eqtrd 2766 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
399, 26, 382if2 4531 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
408, 39eqtr4d 2769 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)))
4140ex 412 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ifcif 4475  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003   + caddc 11006  cle 11144  cmin 11341  ...cfz 13404  chash 14234  Word cword 14417   ++ cconcat 14474   substr csubstr 14545   prefix cpfx 14575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-substr 14546  df-pfx 14576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator