MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat Structured version   Visualization version   GIF version

Theorem swrdccat 14088
Description: The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))

Proof of Theorem swrdccat
StepHypRef Expression
1 swrdccatin2.l . . . . 5 𝐿 = (♯‘𝐴)
21pfxccat3 14087 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
32imp 410 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))
4 lencl 13876 . . . . . 6 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
54adantr 484 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐴) ∈ ℕ0)
61eqcomi 2807 . . . . . . 7 (♯‘𝐴) = 𝐿
76eleq1i 2880 . . . . . 6 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
8 elfz2nn0 12993 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
9 iftrue 4431 . . . . . . . . . . . . . . . . . 18 (𝑁𝐿 → if(𝑁𝐿, 𝑁, 𝐿) = 𝑁)
109adantl 485 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → if(𝑁𝐿, 𝑁, 𝐿) = 𝑁)
1110opeq2d 4772 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝑁⟩)
1211oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
13 iftrue 4431 . . . . . . . . . . . . . . . . . . . 20 (0 ≤ (𝑀𝐿) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = (𝑀𝐿))
1413opeq1d 4771 . . . . . . . . . . . . . . . . . . 19 (0 ≤ (𝑀𝐿) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
1514oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (0 ≤ (𝑀𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
1615adantr 484 . . . . . . . . . . . . . . . . 17 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
17 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐵 ∈ Word 𝑉)
18 nn0z 11993 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
19 nn0z 11993 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2019adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
21 zsubcl 12012 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
2220, 21sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
23 nn0z 11993 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2423adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
25 zsubcl 12012 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2624, 25sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2722, 26jca 515 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℤ) → ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
2818, 27sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
2917, 28anim12i 615 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐵 ∈ Word 𝑉 ∧ ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)))
30 3anass 1092 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) ↔ (𝐵 ∈ Word 𝑉 ∧ ((𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)))
3129, 30sylibr 237 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
3231ad2antrl 727 . . . . . . . . . . . . . . . . . 18 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
33 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
34 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3533, 34anim12i 615 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
36 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
37 subge0 11142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
3837adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
39 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
4039adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑁 ∈ ℝ)
41 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝐿 ∈ ℝ)
42 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℝ)
4342adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → 𝑀 ∈ ℝ)
44 letr 10723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝑁𝐿𝐿𝑀) → 𝑁𝑀))
4540, 41, 43, 44syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → ((𝑁𝐿𝐿𝑀) → 𝑁𝑀))
4645expcomd 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝐿𝑀 → (𝑁𝐿𝑁𝑀)))
4738, 46sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑀𝐿) → (𝑁𝐿𝑁𝑀)))
4847com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐿 ∈ ℝ) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
4935, 36, 48syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
5049adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁𝐿 → (0 ≤ (𝑀𝐿) → 𝑁𝑀)))
5150imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (0 ≤ (𝑀𝐿) → 𝑁𝑀))
5251impcom 411 . . . . . . . . . . . . . . . . . . 19 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → 𝑁𝑀)
5334adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
5453adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑁 ∈ ℝ)
5533adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
5655adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑀 ∈ ℝ)
5736adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
5854, 56, 573jca 1125 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
5958adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
6059ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
61 lesub1 11123 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁𝐿) ≤ (𝑀𝐿)))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . 19 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁𝑀 ↔ (𝑁𝐿) ≤ (𝑀𝐿)))
6352, 62mpbid 235 . . . . . . . . . . . . . . . . . 18 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝑁𝐿) ≤ (𝑀𝐿))
64 swrdlend 14006 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Word 𝑉 ∧ (𝑀𝐿) ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) → ((𝑁𝐿) ≤ (𝑀𝐿) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) = ∅))
6532, 63, 64sylc 65 . . . . . . . . . . . . . . . . 17 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) = ∅)
6616, 65eqtrd 2833 . . . . . . . . . . . . . . . 16 ((0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
67 iffalse 4434 . . . . . . . . . . . . . . . . . . 19 (¬ 0 ≤ (𝑀𝐿) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = 0)
6867opeq1d 4771 . . . . . . . . . . . . . . . . . 18 (¬ 0 ≤ (𝑀𝐿) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨0, (𝑁𝐿)⟩)
6968oveq2d 7151 . . . . . . . . . . . . . . . . 17 (¬ 0 ≤ (𝑀𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
7017adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝐵 ∈ Word 𝑉)
7170adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → 𝐵 ∈ Word 𝑉)
72 0zd 11981 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → 0 ∈ ℤ)
7324, 18, 25syl2an 598 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁𝐿) ∈ ℤ)
7473adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁𝐿) ∈ ℤ)
7574adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝑁𝐿) ∈ ℤ)
7671, 72, 753jca 1125 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
7753, 36anim12i 615 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
7877adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ))
79 suble0 11143 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑁𝐿) ≤ 0 ↔ 𝑁𝐿))
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝑁𝐿) ≤ 0 ↔ 𝑁𝐿))
8180biimpar 481 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝑁𝐿) ≤ 0)
82 swrdlend 14006 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ) → ((𝑁𝐿) ≤ 0 → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = ∅))
8376, 81, 82sylc 65 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 substr ⟨0, (𝑁𝐿)⟩) = ∅)
8469, 83sylan9eq 2853 . . . . . . . . . . . . . . . 16 ((¬ 0 ≤ (𝑀𝐿) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿)) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
8566, 84pm2.61ian 811 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = ∅)
8612, 85oveq12d 7153 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅))
87 swrdcl 13998 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
88 ccatrid 13932 . . . . . . . . . . . . . . . . . 18 ((𝐴 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
8987, 88syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9089adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9190adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9291adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, 𝑁⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9386, 92eqtrd 2833 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝑁𝐿) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (𝐴 substr ⟨𝑀, 𝑁⟩))
94 iffalse 4434 . . . . . . . . . . . . . . . . . . 19 𝑁𝐿 → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
95943ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
9695opeq2d 4772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝐿⟩)
9796oveq2d 7151 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
98 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
9998, 20, 183anim123i 1148 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ))
100993expb 1117 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ))
101 swrdlend 14006 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝑀 → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅))
102100, 101syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐿𝑀 → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅))
103102imp 410 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝐿𝑀) → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅)
1041033adant2 1128 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, 𝐿⟩) = ∅)
10597, 104eqtrd 2833 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = ∅)
10655, 36, 37syl2an 598 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
107106biimprd 251 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿𝑀 → 0 ≤ (𝑀𝐿)))
108107adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐿𝑀 → 0 ≤ (𝑀𝐿)))
109108imp 410 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ 𝐿𝑀) → 0 ≤ (𝑀𝐿))
1101093adant2 1128 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → 0 ≤ (𝑀𝐿))
111110, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨(𝑀𝐿), (𝑁𝐿)⟩)
112111oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
113105, 112oveq12d 7153 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
114 swrdcl 13998 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Word 𝑉 → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
115114adantl 485 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉)
116 ccatlid 13931 . . . . . . . . . . . . . . . . 17 ((𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩) ∈ Word 𝑉 → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
117115, 116syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
118117adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
1191183ad2ant1 1130 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → (∅ ++ (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
120113, 119eqtrd 2833 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
121943ad2ant2 1131 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → if(𝑁𝐿, 𝑁, 𝐿) = 𝐿)
122121opeq2d 4772 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩ = ⟨𝑀, 𝐿⟩)
123122oveq2d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) = (𝐴 substr ⟨𝑀, 𝐿⟩))
12433, 36, 37syl2an 598 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
125124adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
126125adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (0 ≤ (𝑀𝐿) ↔ 𝐿𝑀))
127126biimpd 232 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (0 ≤ (𝑀𝐿) → 𝐿𝑀))
128127con3dimp 412 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝐿𝑀) → ¬ 0 ≤ (𝑀𝐿))
1291283adant2 1128 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ¬ 0 ≤ (𝑀𝐿))
130129, 67syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0) = 0)
131130opeq1d 4771 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩ = ⟨0, (𝑁𝐿)⟩)
132131oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
133703ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 ∈ Word 𝑉)
134 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿) → 𝐿 ∈ ℕ0)
135 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
136135adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿) → 𝑁 ∈ ℕ0)
137 ltnle 10709 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
138 ltle 10718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁𝐿𝑁))
139137, 138sylbird 263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝐿𝐿𝑁))
14036, 53, 139syl2anr 599 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿𝑁))
141140adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → (¬ 𝑁𝐿𝐿𝑁))
142141imp 410 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿) → 𝐿𝑁)
143 nn0sub2 12031 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0𝐿𝑁) → (𝑁𝐿) ∈ ℕ0)
144134, 136, 142, 143syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿) → (𝑁𝐿) ∈ ℕ0)
1451443adant3 1129 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝑁𝐿) ∈ ℕ0)
146133, 145jca 515 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ ℕ0))
147 pfxval 14026 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ ℕ0) → (𝐵 prefix (𝑁𝐿)) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
148146, 147syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix (𝑁𝐿)) = (𝐵 substr ⟨0, (𝑁𝐿)⟩))
149132, 148eqtr4d 2836 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩) = (𝐵 prefix (𝑁𝐿)))
150123, 149oveq12d 7153 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
15193, 120, 1502if2 4478 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))
152151exp32 424 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
153152com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
1541533adant3 1129 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
1558, 154sylbi 220 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
156155adantr 484 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐿 ∈ ℕ0 → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
157156com13 88 . . . . . 6 (𝐿 ∈ ℕ0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
1587, 157sylbi 220 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))))
1595, 158mpcom 38 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
160159imp 410 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))
1613, 160eqtr4d 2836 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩)))
162161ex 416 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  c0 4243  ifcif 4425  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  cmin 10859  0cn0 11885  cz 11969  ...cfz 12885  chash 13686  Word cword 13857   ++ cconcat 13913   substr csubstr 13993   prefix cpfx 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator