Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifor | Structured version Visualization version GIF version |
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifor | ⊢ if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4484 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = 𝐴) | |
2 | 1 | orcs 873 | . . 3 ⊢ (𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = 𝐴) |
3 | iftrue 4484 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴) | |
4 | 2, 3 | eqtr4d 2780 | . 2 ⊢ (𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
5 | iffalse 4487 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵)) | |
6 | biorf 935 | . . . 4 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
7 | 6 | ifbid 4501 | . . 3 ⊢ (¬ 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∨ 𝜓), 𝐴, 𝐵)) |
8 | 5, 7 | eqtr2d 2778 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))) |
9 | 4, 8 | pm2.61i 182 | 1 ⊢ if((𝜑 ∨ 𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ifcif 4478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-if 4479 |
This theorem is referenced by: cantnflem1d 9550 cantnflem1 9551 |
Copyright terms: Public domain | W3C validator |