MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifor Structured version   Visualization version   GIF version

Theorem ifor 4513
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifor if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifor
StepHypRef Expression
1 iftrue 4465 . . . 4 ((𝜑𝜓) → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
21orcs 872 . . 3 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = 𝐴)
3 iftrue 4465 . . 3 (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = 𝐴)
42, 3eqtr4d 2781 . 2 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
5 iffalse 4468 . . 3 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)) = if(𝜓, 𝐴, 𝐵))
6 biorf 934 . . . 4 𝜑 → (𝜓 ↔ (𝜑𝜓)))
76ifbid 4482 . . 3 𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑𝜓), 𝐴, 𝐵))
85, 7eqtr2d 2779 . 2 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵)))
94, 8pm2.61i 182 1 if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, 𝐴, if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1539  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460
This theorem is referenced by:  cantnflem1d  9446  cantnflem1  9447
  Copyright terms: Public domain W3C validator