MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat3 Structured version   Visualization version   GIF version

Theorem pfxccat3 14084
Description: The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccat3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))

Proof of Theorem pfxccat3
StepHypRef Expression
1 simpll 763 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simplrl 773 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑀 ∈ (0...𝑁))
3 lencl 13871 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
4 elfznn0 12988 . . . . . . . . . . . . . 14 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℕ0)
54adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) → 𝑁 ∈ ℕ0)
65adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ ℕ0)
7 simplr 765 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → (♯‘𝐴) ∈ ℕ0)
8 swrdccatin2.l . . . . . . . . . . . . . . 15 𝐿 = (♯‘𝐴)
98breq2i 5065 . . . . . . . . . . . . . 14 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
109biimpi 217 . . . . . . . . . . . . 13 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
1110adantl 482 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ≤ (♯‘𝐴))
12 elfz2nn0 12986 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
136, 7, 11, 12syl3anbrc 1335 . . . . . . . . . . 11 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
1413exp31 420 . . . . . . . . . 10 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1514adantl 482 . . . . . . . . 9 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
163, 15syl5com 31 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1716adantr 481 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1817imp 407 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴))))
1918imp 407 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
202, 19jca 512 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
21 swrdccatin1 14075 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
221, 20, 21sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
23 simp1l 1189 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
248eleq1i 2900 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
25 elfz2nn0 12986 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
26 nn0z 11993 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2726adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
28 nn0z 11993 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
29283ad2ant2 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℤ)
3029adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑁 ∈ ℤ)
31 nn0z 11993 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
32313ad2ant1 1125 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℤ)
3332adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀 ∈ ℤ)
3427, 30, 333jca 1120 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
3534adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
36 simpl3 1185 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀𝑁)
3736anim1ci 615 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿𝑀𝑀𝑁))
38 elfz2 12887 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
3935, 37, 38sylanbrc 583 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
4039exp31 420 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4125, 40sylbi 218 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4241adantr 481 . . . . . . . . . . . 12 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4342com12 32 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4424, 43sylbir 236 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
453, 44syl 17 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4645adantr 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4746imp 407 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁)))
4847a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
49483imp 1103 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
50 elfz2nn0 12986 . . . . . . . . . . . 12 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))))
51 nn0z 11993 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
528, 51eqeltrid 2914 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℤ)
5352adantr 481 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿) → 𝐿 ∈ ℤ)
5453adantl 482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿 ∈ ℤ)
55 nn0z 11993 . . . . . . . . . . . . . . . . 17 ((𝐿 + (♯‘𝐵)) ∈ ℕ0 → (𝐿 + (♯‘𝐵)) ∈ ℤ)
56553ad2ant2 1126 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
5756adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
58283ad2ant1 1125 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ)
5958adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ ℤ)
6054, 57, 593jca 1120 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
618eqcomi 2827 . . . . . . . . . . . . . . . . . . 19 (♯‘𝐴) = 𝐿
6261eleq1i 2900 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
63 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
64 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65 ltnle 10708 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6663, 64, 65syl2anr 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6766bicomd 224 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿 < 𝑁))
68 ltle 10717 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁𝐿𝑁))
6963, 64, 68syl2anr 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁𝐿𝑁))
7067, 69sylbid 241 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿𝑁))
7170ex 413 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7262, 71syl5bi 243 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
73723ad2ant1 1125 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7473imp32 419 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿𝑁)
75 simpl3 1185 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
7674, 75jca 512 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
77 elfz2 12887 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))))
7860, 76, 77sylanbrc 583 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
7978exp32 421 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8050, 79sylbi 218 . . . . . . . . . . 11 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8180adantl 482 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
823, 81syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8382adantr 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8483imp 407 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8584a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
86853imp 1103 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
8749, 86jca 512 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
888swrdccatin2 14079 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
8923, 87, 88sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
90 simp1l 1189 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
91 nn0re 11894 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9291adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
93 ltnle 10708 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9492, 63, 93syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9594bicomd 224 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 < 𝐿))
96 simpll 763 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ ℕ0)
97 simplr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈ ℕ0)
98 ltle 10717 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿𝑀𝐿))
9991, 63, 98syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝑀𝐿))
10099imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀𝐿)
101 elfz2nn0 12986 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10296, 97, 100, 101syl3anbrc 1335 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿))
103102exp31 420 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
104103adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
105104impcom 408 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿𝑀 ∈ (0...𝐿)))
10695, 105sylbid 241 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
107106expcom 414 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1081073adant3 1124 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
10925, 108sylbi 218 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
11062, 109syl5bi 243 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
111110adantr 481 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1123, 111syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
113112adantr 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
114113imp 407 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
115114a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1161153imp 1103 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑀 ∈ (0...𝐿))
117643ad2ant1 1125 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℝ)
11865bicomd 224 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝐿𝐿 < 𝑁))
11963, 117, 118syl2an 595 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝐿 < 𝑁))
12026adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ)
12156adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
12258adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝑁 ∈ ℤ)
123120, 121, 1223jca 1120 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
124123adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12563, 117, 68syl2an 595 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝐿𝑁))
126125imp 407 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿𝑁)
127 simplr3 1209 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
128126, 127jca 512 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
129124, 128, 77sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
130129ex 413 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
131119, 130sylbid 241 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
132131ex 413 . . . . . . . . . . . . . 14 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13362, 132sylbi 218 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1343, 133syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
135134adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
136135com12 32 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13750, 136sylbi 218 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
138137adantl 482 . . . . . . . 8 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
139138impcom 408 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
140139a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1411403imp 1103 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
142116, 141jca 512 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
1438pfxccatin12 14083 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
14490, 142, 143sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
14522, 89, 1442if2 4516 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))
146145ex 413 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  ifcif 4463  cop 4563   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528   < clt 10663  cle 10664  cmin 10858  0cn0 11885  cz 11969  ...cfz 12880  chash 13678  Word cword 13849   ++ cconcat 13910   substr csubstr 13990   prefix cpfx 14020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-substr 13991  df-pfx 14021
This theorem is referenced by:  swrdccat  14085  swrdccat3b  14090
  Copyright terms: Public domain W3C validator