MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat3 Structured version   Visualization version   GIF version

Theorem pfxccat3 14264
Description: The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
pfxccat3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))

Proof of Theorem pfxccat3
StepHypRef Expression
1 simpll 767 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simplrl 777 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑀 ∈ (0...𝑁))
3 lencl 14053 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
4 elfznn0 13170 . . . . . . . . . . . . . 14 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℕ0)
54adantr 484 . . . . . . . . . . . . 13 ((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) → 𝑁 ∈ ℕ0)
65adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ ℕ0)
7 simplr 769 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → (♯‘𝐴) ∈ ℕ0)
8 swrdccatin2.l . . . . . . . . . . . . . . 15 𝐿 = (♯‘𝐴)
98breq2i 5047 . . . . . . . . . . . . . 14 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
109biimpi 219 . . . . . . . . . . . . 13 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
1110adantl 485 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ≤ (♯‘𝐴))
12 elfz2nn0 13168 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
136, 7, 11, 12syl3anbrc 1345 . . . . . . . . . . 11 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
1413exp31 423 . . . . . . . . . 10 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1514adantl 485 . . . . . . . . 9 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
163, 15syl5com 31 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1716adantr 484 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1817imp 410 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴))))
1918imp 410 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
202, 19jca 515 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
21 swrdccatin1 14255 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
221, 20, 21sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
23 simp1l 1199 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
248eleq1i 2821 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
25 elfz2nn0 13168 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
26 nn0z 12165 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2726adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
28 nn0z 12165 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
29283ad2ant2 1136 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℤ)
3029adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑁 ∈ ℤ)
31 nn0z 12165 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
32313ad2ant1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℤ)
3332adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀 ∈ ℤ)
3427, 30, 333jca 1130 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
3534adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
36 simpl3 1195 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀𝑁)
3736anim1ci 619 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿𝑀𝑀𝑁))
38 elfz2 13067 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
3935, 37, 38sylanbrc 586 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
4039exp31 423 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4125, 40sylbi 220 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4241adantr 484 . . . . . . . . . . . 12 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4342com12 32 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4424, 43sylbir 238 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
453, 44syl 17 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4645adantr 484 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4746imp 410 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁)))
4847a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
49483imp 1113 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
50 elfz2nn0 13168 . . . . . . . . . . . 12 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))))
51 nn0z 12165 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
528, 51eqeltrid 2835 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℤ)
5352adantr 484 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿) → 𝐿 ∈ ℤ)
5453adantl 485 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿 ∈ ℤ)
55 nn0z 12165 . . . . . . . . . . . . . . . . 17 ((𝐿 + (♯‘𝐵)) ∈ ℕ0 → (𝐿 + (♯‘𝐵)) ∈ ℤ)
56553ad2ant2 1136 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
5756adantr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
58283ad2ant1 1135 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ)
5958adantr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ ℤ)
6054, 57, 593jca 1130 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
618eqcomi 2745 . . . . . . . . . . . . . . . . . . 19 (♯‘𝐴) = 𝐿
6261eleq1i 2821 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
63 nn0re 12064 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
64 nn0re 12064 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65 ltnle 10877 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6663, 64, 65syl2anr 600 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6766bicomd 226 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿 < 𝑁))
68 ltle 10886 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁𝐿𝑁))
6963, 64, 68syl2anr 600 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁𝐿𝑁))
7067, 69sylbid 243 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿𝑁))
7170ex 416 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7262, 71syl5bi 245 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
73723ad2ant1 1135 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7473imp32 422 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿𝑁)
75 simpl3 1195 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
7674, 75jca 515 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
77 elfz2 13067 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))))
7860, 76, 77sylanbrc 586 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
7978exp32 424 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8050, 79sylbi 220 . . . . . . . . . . 11 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8180adantl 485 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
823, 81syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8382adantr 484 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8483imp 410 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8584a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
86853imp 1113 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
8749, 86jca 515 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
888swrdccatin2 14259 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
8923, 87, 88sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
90 simp1l 1199 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
91 nn0re 12064 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9291adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
93 ltnle 10877 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9492, 63, 93syl2anr 600 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9594bicomd 226 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 < 𝐿))
96 simpll 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ ℕ0)
97 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈ ℕ0)
98 ltle 10886 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿𝑀𝐿))
9991, 63, 98syl2an 599 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝑀𝐿))
10099imp 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀𝐿)
101 elfz2nn0 13168 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10296, 97, 100, 101syl3anbrc 1345 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿))
103102exp31 423 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
104103adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
105104impcom 411 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿𝑀 ∈ (0...𝐿)))
10695, 105sylbid 243 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
107106expcom 417 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1081073adant3 1134 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
10925, 108sylbi 220 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
11062, 109syl5bi 245 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
111110adantr 484 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1123, 111syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
113112adantr 484 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
114113imp 410 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
115114a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1161153imp 1113 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑀 ∈ (0...𝐿))
117643ad2ant1 1135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℝ)
11865bicomd 226 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝐿𝐿 < 𝑁))
11963, 117, 118syl2an 599 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝐿 < 𝑁))
12026adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ)
12156adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
12258adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝑁 ∈ ℤ)
123120, 121, 1223jca 1130 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
124123adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12563, 117, 68syl2an 599 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝐿𝑁))
126125imp 410 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿𝑁)
127 simplr3 1219 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
128126, 127jca 515 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
129124, 128, 77sylanbrc 586 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
130129ex 416 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
131119, 130sylbid 243 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
132131ex 416 . . . . . . . . . . . . . 14 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13362, 132sylbi 220 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1343, 133syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
135134adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
136135com12 32 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13750, 136sylbi 220 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
138137adantl 485 . . . . . . . 8 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
139138impcom 411 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
140139a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1411403imp 1113 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
142116, 141jca 515 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
1438pfxccatin12 14263 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
14490, 142, 143sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
14522, 89, 1442if2 4480 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))))
146145ex 416 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  ifcif 4425  cop 4533   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694   + caddc 10697   < clt 10832  cle 10833  cmin 11027  0cn0 12055  cz 12141  ...cfz 13060  chash 13861  Word cword 14034   ++ cconcat 14090   substr csubstr 14170   prefix cpfx 14200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091  df-substr 14171  df-pfx 14201
This theorem is referenced by:  swrdccat  14265  swrdccat3b  14270
  Copyright terms: Public domain W3C validator