MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralunsn Structured version   Visualization version   GIF version

Theorem 2ralunsn 4831
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypotheses
Ref Expression
2ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜒))
2ralunsn.2 (𝑦 = 𝐵 → (𝜑𝜓))
2ralunsn.3 (𝑥 = 𝐵 → (𝜓𝜃))
Assertion
Ref Expression
2ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝜒,𝑥   𝜓,𝑦   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem 2ralunsn
StepHypRef Expression
1 2ralunsn.2 . . . 4 (𝑦 = 𝐵 → (𝜑𝜓))
21ralunsn 4830 . . 3 (𝐵𝐶 → (∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑦𝐴 𝜑𝜓)))
32ralbidv 3122 . 2 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓)))
4 2ralunsn.1 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
54ralbidv 3122 . . . . 5 (𝑥 = 𝐵 → (∀𝑦𝐴 𝜑 ↔ ∀𝑦𝐴 𝜒))
6 2ralunsn.3 . . . . 5 (𝑥 = 𝐵 → (𝜓𝜃))
75, 6anbi12d 630 . . . 4 (𝑥 = 𝐵 → ((∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑦𝐴 𝜒𝜃)))
87ralunsn 4830 . . 3 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
9 r19.26 3096 . . . 4 (∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
109anbi1i 623 . . 3 ((∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ∧ (∀𝑦𝐴 𝜒𝜃)) ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃)))
118, 10bitrdi 286 . 2 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓) ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
123, 11bitrd 278 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  cun 3889  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432  df-un 3896  df-sn 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator