| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralunsn | Structured version Visualization version GIF version | ||
| Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| 2ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| 2ralunsn.2 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| 2ralunsn.3 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| 2ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralunsn.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ralunsn 4861 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| 3 | 2 | ralbidv 3157 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| 4 | 2ralunsn.1 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 4 | ralbidv 3157 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
| 6 | 2ralunsn.3 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) | |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
| 8 | 7 | ralunsn 4861 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| 9 | r19.26 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 10 | 9 | anbi1i 624 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
| 11 | 8, 10 | bitrdi 287 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| 12 | 3, 11 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ cun 3915 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-un 3922 df-sn 4593 |
| This theorem is referenced by: disjressuc2 38381 |
| Copyright terms: Public domain | W3C validator |