![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralunsn | Structured version Visualization version GIF version |
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
2ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
2ralunsn.2 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
2ralunsn.3 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
2ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralunsn.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
2 | 1 | ralunsn 4889 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
3 | 2 | ralbidv 3171 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
4 | 2ralunsn.1 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 4 | ralbidv 3171 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
6 | 2ralunsn.3 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) | |
7 | 5, 6 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
8 | 7 | ralunsn 4889 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
9 | r19.26 3105 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
10 | 9 | anbi1i 623 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
11 | 8, 10 | bitrdi 287 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
12 | 3, 11 | bitrd 279 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∪ cun 3941 {csn 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-v 3470 df-un 3948 df-sn 4624 |
This theorem is referenced by: disjressuc2 37771 |
Copyright terms: Public domain | W3C validator |