Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralunsn | Structured version Visualization version GIF version |
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 4137 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
2 | ralunsn.1 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4620 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
4 | 3 | anbi2d 629 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
5 | 1, 4 | bitrid 282 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∪ cun 3895 {csn 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-un 3902 df-sn 4573 |
This theorem is referenced by: 2ralunsn 4838 symgextfo 19118 gsmsymgrfixlem1 19123 gsmsymgreqlem2 19127 symgfixf1 19133 cply1coe0bi 21569 scmatf1 21778 mdetunilem9 21867 m2cpminvid2lem 22001 tgcgr4 27122 clwlkclwwlklem2a1 28585 clwlkclwwlkf1lem3 28599 disjunsn 31161 |
Copyright terms: Public domain | W3C validator |