| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunsn | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunb 4144 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
| 2 | ralunsn.1 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4625 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
| 4 | 3 | anbi2d 630 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3895 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-un 3902 df-sn 4574 |
| This theorem is referenced by: 2ralunsn 4844 naddsuc2 8616 symgextfo 19334 gsmsymgrfixlem1 19339 gsmsymgreqlem2 19343 symgfixf1 19349 cply1coe0bi 22217 scmatf1 22446 mdetunilem9 22535 m2cpminvid2lem 22669 tgcgr4 28509 clwlkclwwlklem2a1 29972 clwlkclwwlkf1lem3 29986 disjunsn 32574 |
| Copyright terms: Public domain | W3C validator |