Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralunsn | Structured version Visualization version GIF version |
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 4125 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
2 | ralunsn.1 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4609 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
4 | 3 | anbi2d 629 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
5 | 1, 4 | bitrid 282 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-un 3892 df-sn 4562 |
This theorem is referenced by: 2ralunsn 4826 symgextfo 19030 gsmsymgrfixlem1 19035 gsmsymgreqlem2 19039 symgfixf1 19045 cply1coe0bi 21471 scmatf1 21680 mdetunilem9 21769 m2cpminvid2lem 21903 tgcgr4 26892 clwlkclwwlklem2a1 28356 clwlkclwwlkf1lem3 28370 disjunsn 30933 |
Copyright terms: Public domain | W3C validator |