![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralunsn | Structured version Visualization version GIF version |
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 4192 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
2 | ralunsn.1 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4678 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜓)) |
4 | 3 | anbi2d 630 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∪ cun 3947 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-un 3954 df-sn 4630 |
This theorem is referenced by: 2ralunsn 4896 symgextfo 19290 gsmsymgrfixlem1 19295 gsmsymgreqlem2 19299 symgfixf1 19305 cply1coe0bi 21824 scmatf1 22033 mdetunilem9 22122 m2cpminvid2lem 22256 tgcgr4 27782 clwlkclwwlklem2a1 29245 clwlkclwwlkf1lem3 29259 disjunsn 31825 naddsuc2 42143 |
Copyright terms: Public domain | W3C validator |