MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralunsn Structured version   Visualization version   GIF version

Theorem ralunsn 4805
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 4105 . 2 (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
2 ralunsn.1 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32ralsng 4589 . . 3 (𝐵𝐶 → (∀𝑥 ∈ {𝐵}𝜑𝜓))
43anbi2d 632 . 2 (𝐵𝐶 → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥𝐴 𝜑𝜓)))
51, 4syl5bb 286 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  cun 3864  {csn 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-v 3410  df-un 3871  df-sn 4542
This theorem is referenced by:  2ralunsn  4806  symgextfo  18814  gsmsymgrfixlem1  18819  gsmsymgreqlem2  18823  symgfixf1  18829  cply1coe0bi  21221  scmatf1  21428  mdetunilem9  21517  m2cpminvid2lem  21651  tgcgr4  26622  clwlkclwwlklem2a1  28075  clwlkclwwlkf1lem3  28089  disjunsn  30652
  Copyright terms: Public domain W3C validator