MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralunsn Structured version   Visualization version   GIF version

Theorem ralunsn 4860
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 4162 . 2 (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
2 ralunsn.1 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32ralsng 4641 . . 3 (𝐵𝐶 → (∀𝑥 ∈ {𝐵}𝜑𝜓))
43anbi2d 630 . 2 (𝐵𝐶 → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥𝐴 𝜑𝜓)))
51, 4bitrid 283 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cun 3914  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-un 3921  df-sn 4592
This theorem is referenced by:  2ralunsn  4861  naddsuc2  8667  symgextfo  19358  gsmsymgrfixlem1  19363  gsmsymgreqlem2  19367  symgfixf1  19373  cply1coe0bi  22195  scmatf1  22424  mdetunilem9  22513  m2cpminvid2lem  22647  tgcgr4  28464  clwlkclwwlklem2a1  29927  clwlkclwwlkf1lem3  29941  disjunsn  32529
  Copyright terms: Public domain W3C validator