MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc Structured version   Visualization version   GIF version

Theorem opprc 4863
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc
StepHypRef Expression
1 dfopif 4837 . 2 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
2 iffalse 4500 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅)
31, 2eqtrid 2777 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  {csn 4592  {cpr 4594  cop 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-dif 3920  df-ss 3934  df-nul 4300  df-if 4492  df-op 4599
This theorem is referenced by:  opprc1  4864  opprc2  4865  oprcl  4866  opnz  5436  brabv  5531  opswap  6205  brtpos  8217  bj-brrelex12ALT  37062  elnonrel  43581  oppfrcl2  49122  fucofvalne  49318
  Copyright terms: Public domain W3C validator