![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprc | Structured version Visualization version GIF version |
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif 4707 | . 2 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
2 | iffalse 4390 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅) | |
3 | 1, 2 | syl5eq 2843 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∅c0 4211 ifcif 4381 {csn 4472 {cpr 4474 〈cop 4478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-dif 3862 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-op 4479 |
This theorem is referenced by: opprc1 4734 opprc2 4735 oprcl 4736 opnz 5257 brabv 5341 opswap 5961 brtpos 7752 bj-brrelex12ALT 33976 elnonrel 39449 |
Copyright terms: Public domain | W3C validator |