![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprc | Structured version Visualization version GIF version |
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopif 4863 | . 2 ⊢ ⟨𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
2 | iffalse 4530 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = ∅) | |
3 | 1, 2 | eqtrid 2776 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4315 ifcif 4521 {csn 4621 {cpr 4623 ⟨cop 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-op 4628 |
This theorem is referenced by: opprc1 4890 opprc2 4891 oprcl 4892 opnz 5464 brabv 5560 opswap 6219 brtpos 8216 bj-brrelex12ALT 36439 elnonrel 42850 |
Copyright terms: Public domain | W3C validator |