MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnltblem Structured version   Visualization version   GIF version

Theorem 2sqreunnltblem 26644
Description: Lemma for 2sqreunnltb 26654. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.)
Assertion
Ref Expression
2sqreunnltblem (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnltblem
StepHypRef Expression
1 2sqreunnltlem 26643 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
21ex 414 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 2reu2rex 3375 . . . . 5 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 eqeq2 2748 . . . . . . . . 9 (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
54adantr 482 . . . . . . . 8 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
6 nnnn0 12286 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
7 nnnn0 12286 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8 2sq2 26626 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
96, 7, 8syl2an 597 . . . . . . . . . 10 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
10 breq12 5086 . . . . . . . . . . 11 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1))
11 1re 11021 . . . . . . . . . . . . 13 1 ∈ ℝ
1211ltnri 11130 . . . . . . . . . . . 12 ¬ 1 < 1
1312pm2.21i 119 . . . . . . . . . . 11 (1 < 1 → (𝑃 mod 4) = 1)
1410, 13syl6bi 253 . . . . . . . . . 10 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))
159, 14syl6bi 253 . . . . . . . . 9 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1615adantl 483 . . . . . . . 8 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
175, 16sylbid 239 . . . . . . 7 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1817impcomd 413 . . . . . 6 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
1918rexlimdvva 3202 . . . . 5 (𝑃 = 2 → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
203, 19syl5 34 . . . 4 (𝑃 = 2 → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
2120a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
22 nnssz 12386 . . . . . . . . 9 ℕ ⊆ ℤ
23 id 22 . . . . . . . . . . . . . 14 (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
2423eqcomd 2742 . . . . . . . . . . . . 13 (((𝑎↑2) + (𝑏↑2)) = 𝑃𝑃 = ((𝑎↑2) + (𝑏↑2)))
2524adantl 483 . . . . . . . . . . . 12 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2625reximi 3084 . . . . . . . . . . 11 (∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2726reximi 3084 . . . . . . . . . 10 (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
28 ssrexv 3993 . . . . . . . . . . . 12 (ℕ ⊆ ℤ → (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
2922, 28ax-mp 5 . . . . . . . . . . 11 (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3029reximi 3084 . . . . . . . . . 10 (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
313, 27, 303syl 18 . . . . . . . . 9 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
32 ssrexv 3993 . . . . . . . . 9 (ℕ ⊆ ℤ → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3322, 31, 32mpsyl 68 . . . . . . . 8 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3433adantl 483 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
35 2sqb 26625 . . . . . . . 8 (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
3635adantr 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
3734, 36mpbid 231 . . . . . 6 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
3837ord 862 . . . . 5 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
3938expcom 415 . . . 4 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)))
4039com13 88 . . 3 𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
4121, 40pm2.61i 182 . 2 (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
422, 41impbid 211 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wcel 2104  wrex 3071  ∃!wreu 3282  wss 3892   class class class wbr 5081  (class class class)co 7307  1c1 10918   + caddc 10920   < clt 11055  cn 12019  2c2 12074  4c4 12076  0cn0 12279  cz 12365   mod cmo 13635  cexp 13828  cprime 16421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-ofr 7566  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-oadd 8332  df-er 8529  df-ec 8531  df-qs 8535  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-inf 9246  df-oi 9313  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-fz 13286  df-fzo 13429  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-dvds 16009  df-gcd 16247  df-prm 16422  df-phi 16512  df-pc 16583  df-gz 16676  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-0g 17197  df-gsum 17198  df-prds 17203  df-pws 17205  df-imas 17264  df-qus 17265  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-grp 18625  df-minusg 18626  df-sbg 18627  df-mulg 18746  df-subg 18797  df-nsg 18798  df-eqg 18799  df-ghm 18877  df-cntz 18968  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-srg 19787  df-ring 19830  df-cring 19831  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-dvr 19970  df-rnghom 20004  df-drng 20038  df-field 20039  df-subrg 20067  df-lmod 20170  df-lss 20239  df-lsp 20279  df-sra 20479  df-rgmod 20480  df-lidl 20481  df-rsp 20482  df-2idl 20548  df-nzr 20574  df-rlreg 20599  df-domn 20600  df-idom 20601  df-cnfld 20643  df-zring 20716  df-zrh 20750  df-zn 20753  df-assa 21105  df-asp 21106  df-ascl 21107  df-psr 21157  df-mvr 21158  df-mpl 21159  df-opsr 21161  df-evls 21327  df-evl 21328  df-psr1 21396  df-vr1 21397  df-ply1 21398  df-coe1 21399  df-evl1 21527  df-mdeg 25262  df-deg1 25263  df-mon1 25340  df-uc1p 25341  df-q1p 25342  df-r1p 25343  df-lgs 26488
This theorem is referenced by:  2sqreunnltb  26654
  Copyright terms: Public domain W3C validator