MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnltblem Structured version   Visualization version   GIF version

Theorem 2sqreunnltblem 26934
Description: Lemma for 2sqreunnltb 26944. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.)
Assertion
Ref Expression
2sqreunnltblem (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnltblem
StepHypRef Expression
1 2sqreunnltlem 26933 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
21ex 414 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 2reu2rex 3391 . . . . 5 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 eqeq2 2745 . . . . . . . . 9 (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
54adantr 482 . . . . . . . 8 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
6 nnnn0 12475 . . . . . . . . . . 11 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
7 nnnn0 12475 . . . . . . . . . . 11 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
8 2sq2 26916 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
96, 7, 8syl2an 597 . . . . . . . . . 10 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
10 breq12 5152 . . . . . . . . . . 11 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1))
11 1re 11210 . . . . . . . . . . . . 13 1 ∈ ℝ
1211ltnri 11319 . . . . . . . . . . . 12 ¬ 1 < 1
1312pm2.21i 119 . . . . . . . . . . 11 (1 < 1 → (𝑃 mod 4) = 1)
1410, 13syl6bi 253 . . . . . . . . . 10 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))
159, 14syl6bi 253 . . . . . . . . 9 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1615adantl 483 . . . . . . . 8 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
175, 16sylbid 239 . . . . . . 7 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1817impcomd 413 . . . . . 6 ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
1918rexlimdvva 3212 . . . . 5 (𝑃 = 2 → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
203, 19syl5 34 . . . 4 (𝑃 = 2 → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
2120a1d 25 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
22 nnssz 12576 . . . . . . . . 9 ℕ ⊆ ℤ
23 id 22 . . . . . . . . . . . . . 14 (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
2423eqcomd 2739 . . . . . . . . . . . . 13 (((𝑎↑2) + (𝑏↑2)) = 𝑃𝑃 = ((𝑎↑2) + (𝑏↑2)))
2524adantl 483 . . . . . . . . . . . 12 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2625reximi 3085 . . . . . . . . . . 11 (∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2726reximi 3085 . . . . . . . . . 10 (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
28 ssrexv 4050 . . . . . . . . . . . 12 (ℕ ⊆ ℤ → (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
2922, 28ax-mp 5 . . . . . . . . . . 11 (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3029reximi 3085 . . . . . . . . . 10 (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
313, 27, 303syl 18 . . . . . . . . 9 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
32 ssrexv 4050 . . . . . . . . 9 (ℕ ⊆ ℤ → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3322, 31, 32mpsyl 68 . . . . . . . 8 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3433adantl 483 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
35 2sqb 26915 . . . . . . . 8 (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
3635adantr 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
3734, 36mpbid 231 . . . . . 6 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
3837ord 863 . . . . 5 ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
3938expcom 415 . . . 4 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)))
4039com13 88 . . 3 𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
4121, 40pm2.61i 182 . 2 (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
422, 41impbid 211 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wrex 3071  ∃!wreu 3375  wss 3947   class class class wbr 5147  (class class class)co 7404  1c1 11107   + caddc 11109   < clt 11244  cn 12208  2c2 12263  4c4 12265  0cn0 12468  cz 12554   mod cmo 13830  cexp 14023  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-phi 16695  df-pc 16766  df-gz 16859  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-imas 17450  df-qus 17451  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-srg 20001  df-ring 20049  df-cring 20050  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-dvr 20204  df-rnghom 20240  df-nzr 20281  df-drng 20306  df-field 20307  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lsp 20571  df-sra 20773  df-rgmod 20774  df-lidl 20775  df-rsp 20776  df-2idl 20844  df-rlreg 20886  df-domn 20887  df-idom 20888  df-cnfld 20930  df-zring 21003  df-zrh 21037  df-zn 21040  df-assa 21392  df-asp 21393  df-ascl 21394  df-psr 21444  df-mvr 21445  df-mpl 21446  df-opsr 21448  df-evls 21617  df-evl 21618  df-psr1 21686  df-vr1 21687  df-ply1 21688  df-coe1 21689  df-evl1 21817  df-mdeg 25552  df-deg1 25553  df-mon1 25630  df-uc1p 25631  df-q1p 25632  df-r1p 25633  df-lgs 26778
This theorem is referenced by:  2sqreunnltb  26944
  Copyright terms: Public domain W3C validator