![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sqreunnltblem | Structured version Visualization version GIF version |
Description: Lemma for 2sqreunnltb 27201. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
Ref | Expression |
---|---|
2sqreunnltblem | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreunnltlem 27190 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
3 | 2reu2rex 3389 | . . . . 5 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | |
4 | eqeq2 2743 | . . . . . . . . 9 ⊢ (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2)) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2)) |
6 | nnnn0 12484 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
7 | nnnn0 12484 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0) | |
8 | 2sq2 27173 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1))) | |
9 | 6, 7, 8 | syl2an 595 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1))) |
10 | breq12 5153 | . . . . . . . . . . 11 ⊢ ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1)) | |
11 | 1re 11219 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℝ | |
12 | 11 | ltnri 11328 | . . . . . . . . . . . 12 ⊢ ¬ 1 < 1 |
13 | 12 | pm2.21i 119 | . . . . . . . . . . 11 ⊢ (1 < 1 → (𝑃 mod 4) = 1) |
14 | 10, 13 | syl6bi 253 | . . . . . . . . . 10 ⊢ ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)) |
15 | 9, 14 | syl6bi 253 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))) |
16 | 15 | adantl 481 | . . . . . . . 8 ⊢ ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))) |
17 | 5, 16 | sylbid 239 | . . . . . . 7 ⊢ ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))) |
18 | 17 | impcomd 411 | . . . . . 6 ⊢ ((𝑃 = 2 ∧ (𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)) |
19 | 18 | rexlimdvva 3210 | . . . . 5 ⊢ (𝑃 = 2 → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)) |
20 | 3, 19 | syl5 34 | . . . 4 ⊢ (𝑃 = 2 → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)) |
21 | 20 | a1d 25 | . . 3 ⊢ (𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))) |
22 | nnssz 12585 | . . . . . . . . 9 ⊢ ℕ ⊆ ℤ | |
23 | id 22 | . . . . . . . . . . . . . 14 ⊢ (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃) | |
24 | 23 | eqcomd 2737 | . . . . . . . . . . . . 13 ⊢ (((𝑎↑2) + (𝑏↑2)) = 𝑃 → 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
25 | 24 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
26 | 25 | reximi 3083 | . . . . . . . . . . 11 ⊢ (∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
27 | 26 | reximi 3083 | . . . . . . . . . 10 ⊢ (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
28 | ssrexv 4051 | . . . . . . . . . . . 12 ⊢ (ℕ ⊆ ℤ → (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))) | |
29 | 22, 28 | ax-mp 5 | . . . . . . . . . . 11 ⊢ (∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
30 | 29 | reximi 3083 | . . . . . . . . . 10 ⊢ (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
31 | 3, 27, 30 | 3syl 18 | . . . . . . . . 9 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
32 | ssrexv 4051 | . . . . . . . . 9 ⊢ (ℕ ⊆ ℤ → (∃𝑎 ∈ ℕ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))) | |
33 | 22, 31, 32 | mpsyl 68 | . . . . . . . 8 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
34 | 33 | adantl 481 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))) |
35 | 2sqb 27172 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) | |
36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) |
37 | 34, 36 | mpbid 231 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) |
38 | 37 | ord 861 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)) |
39 | 38 | expcom 413 | . . . 4 ⊢ (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))) |
40 | 39 | com13 88 | . . 3 ⊢ (¬ 𝑃 = 2 → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))) |
41 | 21, 40 | pm2.61i 182 | . 2 ⊢ (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)) |
42 | 2, 41 | impbid 211 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∃!wreu 3373 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7412 1c1 11115 + caddc 11117 < clt 11253 ℕcn 12217 2c2 12272 4c4 12274 ℕ0cn0 12477 ℤcz 12563 mod cmo 13839 ↑cexp 14032 ℙcprime 16613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-ec 8709 df-qs 8713 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-inf 9442 df-oi 9509 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-gcd 16441 df-prm 16614 df-phi 16704 df-pc 16775 df-gz 16868 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-imas 17459 df-qus 17460 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-nsg 19041 df-eqg 19042 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-srg 20082 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-nzr 20405 df-subrng 20435 df-subrg 20460 df-drng 20503 df-field 20504 df-lmod 20617 df-lss 20688 df-lsp 20728 df-sra 20931 df-rgmod 20932 df-lidl 20933 df-rsp 20934 df-2idl 21007 df-rlreg 21100 df-domn 21101 df-idom 21102 df-cnfld 21146 df-zring 21219 df-zrh 21273 df-zn 21276 df-assa 21628 df-asp 21629 df-ascl 21630 df-psr 21682 df-mvr 21683 df-mpl 21684 df-opsr 21686 df-evls 21855 df-evl 21856 df-psr1 21924 df-vr1 21925 df-ply1 21926 df-coe1 21927 df-evl1 22056 df-mdeg 25806 df-deg1 25807 df-mon1 25884 df-uc1p 25885 df-q1p 25886 df-r1p 25887 df-lgs 27035 |
This theorem is referenced by: 2sqreunnltb 27201 |
Copyright terms: Public domain | W3C validator |