MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultblem Structured version   Visualization version   GIF version

Theorem 2sqreultblem 27506
Description: Lemma for 2sqreultb 27517. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.)
Assertion
Ref Expression
2sqreultblem (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreultblem
StepHypRef Expression
1 2sqreultlem 27505 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
21ex 412 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 2reu2rex 3391 . . . . 5 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 elsni 4647 . . . . 5 (𝑃 ∈ {2} → 𝑃 = 2)
5 eqeq2 2746 . . . . . . . . . . 11 (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
65anbi2d 630 . . . . . . . . . 10 (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
76adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
8 2sq2 27491 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
9 breq12 5152 . . . . . . . . . . . . 13 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1))
10 1re 11258 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1110ltnri 11367 . . . . . . . . . . . . . 14 ¬ 1 < 1
1211pm2.21i 119 . . . . . . . . . . . . 13 (1 < 1 → (𝑃 mod 4) = 1)
139, 12biimtrdi 253 . . . . . . . . . . . 12 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))
148, 13biimtrdi 253 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1514impcomd 411 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
1615adantr 480 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
177, 16sylbid 240 . . . . . . . 8 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
1817ex 412 . . . . . . 7 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
1918com23 86 . . . . . 6 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1)))
2019rexlimivv 3198 . . . . 5 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1))
213, 4, 20syl2imc 41 . . . 4 (𝑃 ∈ {2} → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
2221a1d 25 . . 3 (𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
23 eldif 3972 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
24 eldifsnneq 4795 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
25 nn0ssz 12633 . . . . . . . . . . 11 0 ⊆ ℤ
26 id 22 . . . . . . . . . . . . . . . 16 (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
2726eqcomd 2740 . . . . . . . . . . . . . . 15 (((𝑎↑2) + (𝑏↑2)) = 𝑃𝑃 = ((𝑎↑2) + (𝑏↑2)))
2827adantl 481 . . . . . . . . . . . . . 14 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2928reximi 3081 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3029reximi 3081 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
31 ssrexv 4064 . . . . . . . . . . . . . 14 (ℕ0 ⊆ ℤ → (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3225, 31ax-mp 5 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3332reximi 3081 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
343, 30, 333syl 18 . . . . . . . . . . 11 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
35 ssrexv 4064 . . . . . . . . . . 11 (ℕ0 ⊆ ℤ → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3625, 34, 35mpsyl 68 . . . . . . . . . 10 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3736adantl 481 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
38 eldifi 4140 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3938adantr 480 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑃 ∈ ℙ)
40 2sqb 27490 . . . . . . . . . 10 (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4139, 40syl 17 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4237, 41mpbid 232 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
4342ord 864 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
4443ex 412 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)))
4524, 44mpid 44 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4623, 45sylbir 235 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4746expcom 413 . . 3 𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
4822, 47pm2.61i 182 . 2 (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
492, 48impbid 212 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wrex 3067  ∃!wreu 3375  cdif 3959  wss 3962  {csn 4630   class class class wbr 5147  (class class class)co 7430  1c1 11153   + caddc 11155   < clt 11292  2c2 12318  4c4 12320  0cn0 12523  cz 12610   mod cmo 13905  cexp 14098  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705  df-phi 16799  df-pc 16870  df-gz 16963  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-imas 17554  df-qus 17555  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-nsg 19154  df-eqg 19155  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-rhm 20488  df-nzr 20529  df-subrng 20562  df-subrg 20586  df-rlreg 20710  df-domn 20711  df-idom 20712  df-drng 20747  df-field 20748  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-2idl 21277  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-zn 21534  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-evl 22116  df-psr1 22196  df-vr1 22197  df-ply1 22198  df-coe1 22199  df-evl1 22335  df-mdeg 26108  df-deg1 26109  df-mon1 26184  df-uc1p 26185  df-q1p 26186  df-r1p 26187  df-lgs 27353
This theorem is referenced by:  2sqreultb  27517
  Copyright terms: Public domain W3C validator