MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultblem Structured version   Visualization version   GIF version

Theorem 2sqreultblem 27297
Description: Lemma for 2sqreultb 27308. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.)
Assertion
Ref Expression
2sqreultblem (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreultblem
StepHypRef Expression
1 2sqreultlem 27296 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
21ex 412 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 2reu2rex 3382 . . . . 5 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 elsni 4637 . . . . 5 (𝑃 ∈ {2} → 𝑃 = 2)
5 eqeq2 2736 . . . . . . . . . . 11 (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
65anbi2d 628 . . . . . . . . . 10 (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
76adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
8 2sq2 27282 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
9 breq12 5143 . . . . . . . . . . . . 13 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1))
10 1re 11211 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1110ltnri 11320 . . . . . . . . . . . . . 14 ¬ 1 < 1
1211pm2.21i 119 . . . . . . . . . . . . 13 (1 < 1 → (𝑃 mod 4) = 1)
139, 12syl6bi 253 . . . . . . . . . . . 12 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))
148, 13syl6bi 253 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1514impcomd 411 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
1615adantr 480 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
177, 16sylbid 239 . . . . . . . 8 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
1817ex 412 . . . . . . 7 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
1918com23 86 . . . . . 6 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1)))
2019rexlimivv 3191 . . . . 5 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1))
213, 4, 20syl2imc 41 . . . 4 (𝑃 ∈ {2} → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
2221a1d 25 . . 3 (𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
23 eldif 3950 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
24 eldifsnneq 4786 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
25 nn0ssz 12578 . . . . . . . . . . 11 0 ⊆ ℤ
26 id 22 . . . . . . . . . . . . . . . 16 (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
2726eqcomd 2730 . . . . . . . . . . . . . . 15 (((𝑎↑2) + (𝑏↑2)) = 𝑃𝑃 = ((𝑎↑2) + (𝑏↑2)))
2827adantl 481 . . . . . . . . . . . . . 14 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2928reximi 3076 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3029reximi 3076 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
31 ssrexv 4043 . . . . . . . . . . . . . 14 (ℕ0 ⊆ ℤ → (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3225, 31ax-mp 5 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3332reximi 3076 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
343, 30, 333syl 18 . . . . . . . . . . 11 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
35 ssrexv 4043 . . . . . . . . . . 11 (ℕ0 ⊆ ℤ → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3625, 34, 35mpsyl 68 . . . . . . . . . 10 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3736adantl 481 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
38 eldifi 4118 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3938adantr 480 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑃 ∈ ℙ)
40 2sqb 27281 . . . . . . . . . 10 (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4139, 40syl 17 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4237, 41mpbid 231 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
4342ord 861 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
4443ex 412 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)))
4524, 44mpid 44 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4623, 45sylbir 234 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4746expcom 413 . . 3 𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
4822, 47pm2.61i 182 . 2 (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
492, 48impbid 211 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  wrex 3062  ∃!wreu 3366  cdif 3937  wss 3940  {csn 4620   class class class wbr 5138  (class class class)co 7401  1c1 11107   + caddc 11109   < clt 11245  2c2 12264  4c4 12266  0cn0 12469  cz 12555   mod cmo 13831  cexp 14024  cprime 16605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-xnn0 12542  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16195  df-gcd 16433  df-prm 16606  df-phi 16698  df-pc 16769  df-gz 16862  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-imas 17453  df-qus 17454  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-srg 20082  df-ring 20130  df-cring 20131  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-rhm 20364  df-nzr 20405  df-subrng 20436  df-subrg 20461  df-drng 20579  df-field 20580  df-lmod 20698  df-lss 20769  df-lsp 20809  df-sra 21011  df-rgmod 21012  df-lidl 21057  df-rsp 21058  df-2idl 21097  df-rlreg 21183  df-domn 21184  df-idom 21185  df-cnfld 21229  df-zring 21302  df-zrh 21358  df-zn 21361  df-assa 21716  df-asp 21717  df-ascl 21718  df-psr 21771  df-mvr 21772  df-mpl 21773  df-opsr 21775  df-evls 21945  df-evl 21946  df-psr1 22022  df-vr1 22023  df-ply1 22024  df-coe1 22025  df-evl1 22157  df-mdeg 25910  df-deg1 25911  df-mon1 25988  df-uc1p 25989  df-q1p 25990  df-r1p 25991  df-lgs 27144
This theorem is referenced by:  2sqreultb  27308
  Copyright terms: Public domain W3C validator