MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreultblem Structured version   Visualization version   GIF version

Theorem 2sqreultblem 27357
Description: Lemma for 2sqreultb 27368. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.)
Assertion
Ref Expression
2sqreultblem (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreultblem
StepHypRef Expression
1 2sqreultlem 27356 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
21ex 412 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
3 2reu2rex 3357 . . . . 5 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 elsni 4594 . . . . 5 (𝑃 ∈ {2} → 𝑃 = 2)
5 eqeq2 2741 . . . . . . . . . . 11 (𝑃 = 2 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑎↑2) + (𝑏↑2)) = 2))
65anbi2d 630 . . . . . . . . . 10 (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
76adantl 481 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2)))
8 2sq2 27342 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 ↔ (𝑎 = 1 ∧ 𝑏 = 1)))
9 breq12 5097 . . . . . . . . . . . . 13 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 ↔ 1 < 1))
10 1re 11115 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1110ltnri 11225 . . . . . . . . . . . . . 14 ¬ 1 < 1
1211pm2.21i 119 . . . . . . . . . . . . 13 (1 < 1 → (𝑃 mod 4) = 1)
139, 12biimtrdi 253 . . . . . . . . . . . 12 ((𝑎 = 1 ∧ 𝑏 = 1) → (𝑎 < 𝑏 → (𝑃 mod 4) = 1))
148, 13biimtrdi 253 . . . . . . . . . . 11 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (((𝑎↑2) + (𝑏↑2)) = 2 → (𝑎 < 𝑏 → (𝑃 mod 4) = 1)))
1514impcomd 411 . . . . . . . . . 10 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
1615adantr 480 . . . . . . . . 9 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 2) → (𝑃 mod 4) = 1))
177, 16sylbid 240 . . . . . . . 8 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑃 = 2) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
1817ex 412 . . . . . . 7 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = 2 → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
1918com23 86 . . . . . 6 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1)))
2019rexlimivv 3171 . . . . 5 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 = 2 → (𝑃 mod 4) = 1))
213, 4, 20syl2imc 41 . . . 4 (𝑃 ∈ {2} → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
2221a1d 25 . . 3 (𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
23 eldif 3913 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
24 eldifsnneq 4742 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 𝑃 = 2)
25 nn0ssz 12494 . . . . . . . . . . 11 0 ⊆ ℤ
26 id 22 . . . . . . . . . . . . . . . 16 (((𝑎↑2) + (𝑏↑2)) = 𝑃 → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
2726eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝑎↑2) + (𝑏↑2)) = 𝑃𝑃 = ((𝑎↑2) + (𝑏↑2)))
2827adantl 481 . . . . . . . . . . . . . 14 ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2928reximi 3067 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3029reximi 3067 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
31 ssrexv 4005 . . . . . . . . . . . . . 14 (ℕ0 ⊆ ℤ → (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3225, 31ax-mp 5 . . . . . . . . . . . . 13 (∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3332reximi 3067 . . . . . . . . . . . 12 (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
343, 30, 333syl 18 . . . . . . . . . . 11 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
35 ssrexv 4005 . . . . . . . . . . 11 (ℕ0 ⊆ ℤ → (∃𝑎 ∈ ℕ0𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
3625, 34, 35mpsyl 68 . . . . . . . . . 10 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
3736adantl 481 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)))
38 eldifi 4082 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
3938adantr 480 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑃 ∈ ℙ)
40 2sqb 27341 . . . . . . . . . 10 (𝑃 ∈ ℙ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4139, 40syl 17 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
4237, 41mpbid 232 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
4342ord 864 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
4443ex 412 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1)))
4524, 44mpid 44 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4623, 45sylbir 235 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
4746expcom 413 . . 3 𝑃 ∈ {2} → (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1)))
4822, 47pm2.61i 182 . 2 (𝑃 ∈ ℙ → (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑃 mod 4) = 1))
492, 48impbid 212 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  ∃!wreu 3341  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  (class class class)co 7349  1c1 11010   + caddc 11012   < clt 11149  2c2 12183  4c4 12185  0cn0 12384  cz 12471   mod cmo 13773  cexp 13968  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-lgs 27204
This theorem is referenced by:  2sqreultb  27368
  Copyright terms: Public domain W3C validator