MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sb5 Structured version   Visualization version   GIF version

Theorem 2sb5 2309
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2sb5 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 2sb5
StepHypRef Expression
1 sb5 2308 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑))
2 19.42v 2052 . . . 4 (∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤𝜑)) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤𝜑)))
3 anass 462 . . . . 5 (((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑) ↔ (𝑥 = 𝑧 ∧ (𝑦 = 𝑤𝜑)))
43exbii 1947 . . . 4 (∃𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤𝜑)))
5 sb5 2308 . . . . 5 ([𝑤 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑤𝜑))
65anbi2i 616 . . . 4 ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤𝜑)))
72, 4, 63bitr4ri 296 . . 3 ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
87exbii 1947 . 2 (∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
91, 8bitri 267 1 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wex 1878  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-12 2220
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ex 1879  df-nf 1883  df-sb 2068
This theorem is referenced by:  opelopabsbALT  5210
  Copyright terms: Public domain W3C validator