MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vopelopabsb Structured version   Visualization version   GIF version

Theorem vopelopabsb 5522
Description: The law of concretion in terms of substitutions. Version of opelopabsb 5523 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.)
Assertion
Ref Expression
vopelopabsb (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem vopelopabsb
StepHypRef Expression
1 eqcom 2733 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
2 vex 3472 . . . . . 6 𝑥 ∈ V
3 vex 3472 . . . . . 6 𝑦 ∈ V
42, 3opth 5469 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
51, 4bitri 275 . . . 4 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
65anbi1i 623 . . 3 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
762exbii 1843 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
8 elopab 5520 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
9 2sb5 2263 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
107, 8, 93bitr4i 303 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wex 1773  [wsb 2059  wcel 2098  cop 4629  {copab 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-opab 5204
This theorem is referenced by:  opelopabsb  5523  inopab  5822  difopab  5823  cnvopab  6132  isarep1  6631  brabsb2  38245
  Copyright terms: Public domain W3C validator