![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vopelopabsb | Structured version Visualization version GIF version |
Description: The law of concretion in terms of substitutions. Version of opelopabsb 5523 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.) |
Ref | Expression |
---|---|
vopelopabsb | ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2733 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
2 | vex 3472 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3472 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth 5469 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
5 | 1, 4 | bitri 275 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
6 | 5 | anbi1i 623 | . . 3 ⊢ ((〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
7 | 6 | 2exbii 1843 | . 2 ⊢ (∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
8 | elopab 5520 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
9 | 2sb5 2263 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 [wsb 2059 ∈ wcel 2098 〈cop 4629 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5204 |
This theorem is referenced by: opelopabsb 5523 inopab 5822 difopab 5823 cnvopab 6132 isarep1 6631 brabsb2 38245 |
Copyright terms: Public domain | W3C validator |