MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vopelopabsb Structured version   Visualization version   GIF version

Theorem vopelopabsb 5435
Description: The law of concretion in terms of substitutions. Version of opelopabsb 5436 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.)
Assertion
Ref Expression
vopelopabsb (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem vopelopabsb
StepHypRef Expression
1 eqcom 2745 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
2 vex 3426 . . . . . 6 𝑥 ∈ V
3 vex 3426 . . . . . 6 𝑦 ∈ V
42, 3opth 5385 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
51, 4bitri 274 . . . 4 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
65anbi1i 623 . . 3 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
762exbii 1852 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
8 elopab 5433 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
9 2sb5 2275 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
107, 8, 93bitr4i 302 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by:  opelopabsb  5436  inopab  5728  cnvopab  6031  brabsb2  36803
  Copyright terms: Public domain W3C validator