MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vopelopabsb Structured version   Visualization version   GIF version

Theorem vopelopabsb 5492
Description: The law of concretion in terms of substitutions. Version of opelopabsb 5493 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.)
Assertion
Ref Expression
vopelopabsb (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem vopelopabsb
StepHypRef Expression
1 eqcom 2737 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
2 vex 3454 . . . . . 6 𝑥 ∈ V
3 vex 3454 . . . . . 6 𝑦 ∈ V
42, 3opth 5439 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
51, 4bitri 275 . . . 4 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝑧𝑦 = 𝑤))
65anbi1i 624 . . 3 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
762exbii 1849 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
8 elopab 5490 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
9 2sb5 2278 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
107, 8, 93bitr4i 303 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  [wsb 2065  wcel 2109  cop 4598  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173
This theorem is referenced by:  opelopabsb  5493  inopab  5795  difopab  5796  cnvopabOLD  6114  isarep1  6609  brabsb2  38862
  Copyright terms: Public domain W3C validator