Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vopelopabsb | Structured version Visualization version GIF version |
Description: The law of concretion in terms of substitutions. Version of opelopabsb 5436 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.) |
Ref | Expression |
---|---|
vopelopabsb | ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
2 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth 5385 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
5 | 1, 4 | bitri 274 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
6 | 5 | anbi1i 623 | . . 3 ⊢ ((〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
7 | 6 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
8 | elopab 5433 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
9 | 2sb5 2275 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) | |
10 | 7, 8, 9 | 3bitr4i 302 | 1 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 [wsb 2068 ∈ wcel 2108 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: opelopabsb 5436 inopab 5728 cnvopab 6031 brabsb2 36803 |
Copyright terms: Public domain | W3C validator |