| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vopelopabsb | Structured version Visualization version GIF version | ||
| Description: The law of concretion in terms of substitutions. Version of opelopabsb 5510 with set variables. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Remove unnecessary commutation. (Revised by SN, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| vopelopabsb | ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2743 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 2 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3468 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opth 5456 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 5 | 1, 4 | bitri 275 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 6 | 5 | anbi1i 624 | . . 3 ⊢ ((〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| 7 | 6 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| 8 | elopab 5507 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑧, 𝑤〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 9 | 2sb5 2279 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: opelopabsb 5510 inopab 5813 difopab 5814 cnvopabOLD 6132 isarep1 6631 brabsb2 38885 |
| Copyright terms: Public domain | W3C validator |