Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sb8ev | Structured version Visualization version GIF version |
Description: An equivalent expression for double existence. Version of 2sb8e 2535 with more disjoint variable conditions, not requiring ax-13 2372. (Contributed by Wolf Lammen, 28-Jan-2023.) |
Ref | Expression |
---|---|
2sb8ev.1 | ⊢ Ⅎ𝑤𝜑 |
2sb8ev.2 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
2sb8ev | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sb8ev.1 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
2 | 1 | sb8ev 2353 | . . . 4 ⊢ (∃𝑦𝜑 ↔ ∃𝑤[𝑤 / 𝑦]𝜑) |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑤[𝑤 / 𝑦]𝜑) |
4 | excom 2164 | . . 3 ⊢ (∃𝑥∃𝑤[𝑤 / 𝑦]𝜑 ↔ ∃𝑤∃𝑥[𝑤 / 𝑦]𝜑) | |
5 | 3, 4 | bitri 274 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑤∃𝑥[𝑤 / 𝑦]𝜑) |
6 | 2sb8ev.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
7 | 6 | nfsbv 2328 | . . . 4 ⊢ Ⅎ𝑧[𝑤 / 𝑦]𝜑 |
8 | 7 | sb8ev 2353 | . . 3 ⊢ (∃𝑥[𝑤 / 𝑦]𝜑 ↔ ∃𝑧[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
9 | 8 | exbii 1851 | . 2 ⊢ (∃𝑤∃𝑥[𝑤 / 𝑦]𝜑 ↔ ∃𝑤∃𝑧[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
10 | excom 2164 | . 2 ⊢ (∃𝑤∃𝑧[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
11 | 5, 9, 10 | 3bitri 296 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: 2exsb 2358 2mo 2650 |
Copyright terms: Public domain | W3C validator |