MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8ev Structured version   Visualization version   GIF version

Theorem sb8ev 2322
Description: Substitution of variable in existential quantifier. Version of sb8e 2502 with a disjoint variable condition, not requiring ax-13 2334. (Contributed by Wolf Lammen, 19-Jan-2023.)
Hypothesis
Ref Expression
sb8v.nf 𝑦𝜑
Assertion
Ref Expression
sb8ev (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8ev
StepHypRef Expression
1 sb8v.nf . 2 𝑦𝜑
2 nfs1v 2254 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2229 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvexv1 2313 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wex 1823  wnf 1827  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-10 2135  ax-11 2150  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by:  2sb8ev  2323  2sb8evOLD  2324  sbnf2  2326  mo3  2580
  Copyright terms: Public domain W3C validator