Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > colinearperm1 | Structured version Visualization version GIF version |
Description: Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
Ref | Expression |
---|---|
colinearperm1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐴 Colinear 〈𝐶, 𝐵〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncom 34243 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ 𝐴 Btwn 〈𝐶, 𝐵〉)) | |
2 | 3anrot 1098 | . . . . 5 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) | |
3 | btwncom 34243 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐶, 𝐴〉 ↔ 𝐵 Btwn 〈𝐴, 𝐶〉)) | |
4 | 2, 3 | sylan2b 593 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐶, 𝐴〉 ↔ 𝐵 Btwn 〈𝐴, 𝐶〉)) |
5 | 3anrot 1098 | . . . . 5 ⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) | |
6 | btwncom 34243 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 ↔ 𝐶 Btwn 〈𝐵, 𝐴〉)) | |
7 | 5, 6 | sylan2br 594 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 ↔ 𝐶 Btwn 〈𝐵, 𝐴〉)) |
8 | 1, 4, 7 | 3orbi123d 1433 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ (𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉))) |
9 | 3orcomb 1092 | . . 3 ⊢ ((𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉) ↔ (𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉)) | |
10 | 8, 9 | bitrdi 286 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ (𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉))) |
11 | brcolinear 34288 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | |
12 | 3ancomb 1097 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) | |
13 | brcolinear 34288 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐶, 𝐵〉 ↔ (𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉))) | |
14 | 12, 13 | sylan2b 593 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐶, 𝐵〉 ↔ (𝐴 Btwn 〈𝐶, 𝐵〉 ∨ 𝐶 Btwn 〈𝐵, 𝐴〉 ∨ 𝐵 Btwn 〈𝐴, 𝐶〉))) |
15 | 10, 11, 14 | 3bitr4d 310 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐴 Colinear 〈𝐶, 𝐵〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1084 ∧ w3a 1085 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 ℕcn 11903 𝔼cee 27159 Btwn cbtwn 27160 Colinear ccolin 34266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-ee 27162 df-btwn 27163 df-cgr 27164 df-colinear 34268 |
This theorem is referenced by: colinearperm2 34293 colinearperm5 34295 btwncolinear2 34299 linecom 34379 |
Copyright terms: Public domain | W3C validator |