| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lncom | Structured version Visualization version GIF version | ||
| Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
| btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
| btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
| btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| lncom.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) |
| Ref | Expression |
|---|---|
| lncom | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lncom.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) | |
| 2 | 3orcomb 1093 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
| 3 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 28473 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
| 11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 28473 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
| 12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 28473 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
| 13 | 10, 11, 12 | 3orbi123d 1437 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 14 | 2, 13 | bitrid 283 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 16 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 17 | 3, 15, 5, 6, 7, 9, 16, 8 | tgellng 28537 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 18 | 16 | necomd 2988 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
| 19 | 3, 15, 5, 6, 9, 7, 18, 8 | tgellng 28537 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 20 | 14, 17, 19 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋))) |
| 21 | 1, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 |
| This theorem is referenced by: tglineelsb2 28616 tglinecom 28619 ncolncol 28630 coltr 28631 midexlem 28676 footexALT 28702 footexlem1 28703 footexlem2 28704 opphllem1 28731 opphllem2 28732 outpasch 28739 hlpasch 28740 trgcopy 28788 trgcopyeulem 28789 cgracgr 28802 tgasa1 28842 |
| Copyright terms: Public domain | W3C validator |