Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lncom | Structured version Visualization version GIF version |
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lncom.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) |
Ref | Expression |
---|---|
lncom | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lncom.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) | |
2 | 3orcomb 1092 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
3 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | eqid 2738 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 26754 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 26754 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 26754 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
13 | 10, 11, 12 | 3orbi123d 1433 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
14 | 2, 13 | syl5bb 282 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
17 | 3, 15, 5, 6, 7, 9, 16, 8 | tgellng 26818 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 16 | necomd 2998 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
19 | 3, 15, 5, 6, 9, 7, 18, 8 | tgellng 26818 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
20 | 14, 17, 19 | 3bitr4d 310 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋))) |
21 | 1, 20 | mpbird 256 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 |
This theorem is referenced by: tglineelsb2 26897 tglinecom 26900 ncolncol 26911 coltr 26912 midexlem 26957 footexALT 26983 footexlem1 26984 footexlem2 26985 opphllem1 27012 opphllem2 27013 outpasch 27020 hlpasch 27021 trgcopy 27069 trgcopyeulem 27070 cgracgr 27083 tgasa1 27123 |
Copyright terms: Public domain | W3C validator |