Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lncom | Structured version Visualization version GIF version |
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
lncom.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) |
Ref | Expression |
---|---|
lncom | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lncom.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) | |
2 | 3orcomb 1093 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
3 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | eqid 2740 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 26861 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 26861 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 26861 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
13 | 10, 11, 12 | 3orbi123d 1434 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
14 | 2, 13 | syl5bb 283 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
17 | 3, 15, 5, 6, 7, 9, 16, 8 | tgellng 26925 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 16 | necomd 3001 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
19 | 3, 15, 5, 6, 9, 7, 18, 8 | tgellng 26925 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
20 | 14, 17, 19 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋))) |
21 | 1, 20 | mpbird 256 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 distcds 16982 TarskiGcstrkg 26799 Itvcitv 26805 LineGclng 26806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-trkgc 26820 df-trkgb 26821 df-trkgcb 26822 df-trkg 26825 |
This theorem is referenced by: tglineelsb2 27004 tglinecom 27007 ncolncol 27018 coltr 27019 midexlem 27064 footexALT 27090 footexlem1 27091 footexlem2 27092 opphllem1 27119 opphllem2 27120 outpasch 27127 hlpasch 27128 trgcopy 27176 trgcopyeulem 27177 cgracgr 27190 tgasa1 27230 |
Copyright terms: Public domain | W3C validator |