MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lncom Structured version   Visualization version   GIF version

Theorem lncom 28600
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lncom.1 (𝜑𝑍 ∈ (𝑌𝐿𝑋))
Assertion
Ref Expression
lncom (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lncom
StepHypRef Expression
1 lncom.1 . 2 (𝜑𝑍 ∈ (𝑌𝐿𝑋))
2 3orcomb 1093 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))
3 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
4 eqid 2731 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
5 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
8 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
9 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
103, 4, 5, 6, 7, 8, 9tgbtwncomb 28467 . . . . 5 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋)))
113, 4, 5, 6, 7, 9, 8tgbtwncomb 28467 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋)))
123, 4, 5, 6, 8, 7, 9tgbtwncomb 28467 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍)))
1310, 11, 123orbi123d 1437 . . . 4 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
142, 13bitrid 283 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
15 btwnlng1.l . . . 4 𝐿 = (LineG‘𝐺)
16 btwnlng1.d . . . 4 (𝜑𝑋𝑌)
173, 15, 5, 6, 7, 9, 16, 8tgellng 28531 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1816necomd 2983 . . . 4 (𝜑𝑌𝑋)
193, 15, 5, 6, 9, 7, 18, 8tgellng 28531 . . 3 (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
2014, 17, 193bitr4d 311 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋)))
211, 20mpbird 257 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by:  tglineelsb2  28610  tglinecom  28613  ncolncol  28624  coltr  28625  midexlem  28670  footexALT  28696  footexlem1  28697  footexlem2  28698  opphllem1  28725  opphllem2  28726  outpasch  28733  hlpasch  28734  trgcopy  28782  trgcopyeulem  28783  cgracgr  28796  tgasa1  28836
  Copyright terms: Public domain W3C validator