MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lncom Structured version   Visualization version   GIF version

Theorem lncom 28556
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
lncom.1 (𝜑𝑍 ∈ (𝑌𝐿𝑋))
Assertion
Ref Expression
lncom (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem lncom
StepHypRef Expression
1 lncom.1 . 2 (𝜑𝑍 ∈ (𝑌𝐿𝑋))
2 3orcomb 1093 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))
3 btwnlng1.p . . . . . 6 𝑃 = (Base‘𝐺)
4 eqid 2730 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
5 btwnlng1.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . . . . 6 (𝜑𝑋𝑃)
8 btwnlng1.z . . . . . 6 (𝜑𝑍𝑃)
9 btwnlng1.y . . . . . 6 (𝜑𝑌𝑃)
103, 4, 5, 6, 7, 8, 9tgbtwncomb 28423 . . . . 5 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋)))
113, 4, 5, 6, 7, 9, 8tgbtwncomb 28423 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋)))
123, 4, 5, 6, 8, 7, 9tgbtwncomb 28423 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍)))
1310, 11, 123orbi123d 1437 . . . 4 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
142, 13bitrid 283 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
15 btwnlng1.l . . . 4 𝐿 = (LineG‘𝐺)
16 btwnlng1.d . . . 4 (𝜑𝑋𝑌)
173, 15, 5, 6, 7, 9, 16, 8tgellng 28487 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1816necomd 2981 . . . 4 (𝜑𝑌𝑋)
193, 15, 5, 6, 9, 7, 18, 8tgellng 28487 . . 3 (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
2014, 17, 193bitr4d 311 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋)))
211, 20mpbird 257 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387
This theorem is referenced by:  tglineelsb2  28566  tglinecom  28569  ncolncol  28580  coltr  28581  midexlem  28626  footexALT  28652  footexlem1  28653  footexlem2  28654  opphllem1  28681  opphllem2  28682  outpasch  28689  hlpasch  28690  trgcopy  28738  trgcopyeulem  28739  cgracgr  28752  tgasa1  28792
  Copyright terms: Public domain W3C validator