![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lncom | Structured version Visualization version GIF version |
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | β’ π = (BaseβπΊ) |
btwnlng1.i | β’ πΌ = (ItvβπΊ) |
btwnlng1.l | β’ πΏ = (LineGβπΊ) |
btwnlng1.g | β’ (π β πΊ β TarskiG) |
btwnlng1.x | β’ (π β π β π) |
btwnlng1.y | β’ (π β π β π) |
btwnlng1.z | β’ (π β π β π) |
btwnlng1.d | β’ (π β π β π) |
lncom.1 | β’ (π β π β (ππΏπ)) |
Ref | Expression |
---|---|
lncom | β’ (π β π β (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lncom.1 | . 2 β’ (π β π β (ππΏπ)) | |
2 | 3orcomb 1095 | . . . 4 β’ ((π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) | |
3 | btwnlng1.p | . . . . . 6 β’ π = (BaseβπΊ) | |
4 | eqid 2733 | . . . . . 6 β’ (distβπΊ) = (distβπΊ) | |
5 | btwnlng1.i | . . . . . 6 β’ πΌ = (ItvβπΊ) | |
6 | btwnlng1.g | . . . . . 6 β’ (π β πΊ β TarskiG) | |
7 | btwnlng1.x | . . . . . 6 β’ (π β π β π) | |
8 | btwnlng1.z | . . . . . 6 β’ (π β π β π) | |
9 | btwnlng1.y | . . . . . 6 β’ (π β π β π) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 27740 | . . . . 5 β’ (π β (π β (ππΌπ) β π β (ππΌπ))) |
11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 27740 | . . . . 5 β’ (π β (π β (ππΌπ) β π β (ππΌπ))) |
12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 27740 | . . . . 5 β’ (π β (π β (ππΌπ) β π β (ππΌπ))) |
13 | 10, 11, 12 | 3orbi123d 1436 | . . . 4 β’ (π β ((π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
14 | 2, 13 | bitrid 283 | . . 3 β’ (π β ((π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
15 | btwnlng1.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
16 | btwnlng1.d | . . . 4 β’ (π β π β π) | |
17 | 3, 15, 5, 6, 7, 9, 16, 8 | tgellng 27804 | . . 3 β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
18 | 16 | necomd 2997 | . . . 4 β’ (π β π β π) |
19 | 3, 15, 5, 6, 9, 7, 18, 8 | tgellng 27804 | . . 3 β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
20 | 14, 17, 19 | 3bitr4d 311 | . 2 β’ (π β (π β (ππΏπ) β π β (ππΏπ))) |
21 | 1, 20 | mpbird 257 | 1 β’ (π β π β (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1087 = wceq 1542 β wcel 2107 β wne 2941 βcfv 6544 (class class class)co 7409 Basecbs 17144 distcds 17206 TarskiGcstrkg 27678 Itvcitv 27684 LineGclng 27685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-trkgc 27699 df-trkgb 27700 df-trkgcb 27701 df-trkg 27704 |
This theorem is referenced by: tglineelsb2 27883 tglinecom 27886 ncolncol 27897 coltr 27898 midexlem 27943 footexALT 27969 footexlem1 27970 footexlem2 27971 opphllem1 27998 opphllem2 27999 outpasch 28006 hlpasch 28007 trgcopy 28055 trgcopyeulem 28056 cgracgr 28069 tgasa1 28109 |
Copyright terms: Public domain | W3C validator |