| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lncom | Structured version Visualization version GIF version | ||
| Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
| btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
| btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
| btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| lncom.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) |
| Ref | Expression |
|---|---|
| lncom | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lncom.1 | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑌𝐿𝑋)) | |
| 2 | 3orcomb 1093 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
| 3 | btwnlng1.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | btwnlng1.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | btwnlng1.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | btwnlng1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | btwnlng1.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | btwnlng1.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 28469 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
| 11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 28469 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
| 12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 28469 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
| 13 | 10, 11, 12 | 3orbi123d 1437 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 14 | 2, 13 | bitrid 283 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 15 | btwnlng1.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 16 | btwnlng1.d | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 17 | 3, 15, 5, 6, 7, 9, 16, 8 | tgellng 28533 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 18 | 16 | necomd 2980 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
| 19 | 3, 15, 5, 6, 9, 7, 18, 8 | tgellng 28533 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 20 | 14, 17, 19 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ (𝑌𝐿𝑋))) |
| 21 | 1, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 LineGclng 28414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkg 28433 |
| This theorem is referenced by: tglineelsb2 28612 tglinecom 28615 ncolncol 28626 coltr 28627 midexlem 28672 footexALT 28698 footexlem1 28699 footexlem2 28700 opphllem1 28727 opphllem2 28728 outpasch 28735 hlpasch 28736 trgcopy 28784 trgcopyeulem 28785 cgracgr 28798 tgasa1 28838 |
| Copyright terms: Public domain | W3C validator |