MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneltri Structured version   Visualization version   GIF version

Theorem oneltri 6383
Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6372. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))

Proof of Theorem oneltri
StepHypRef Expression
1 eloni 6350 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6350 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordtri3or 6372 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 3orcomb 1093 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
64, 5sylib 218 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  Ord word 6339  Oncon0 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-tr 5223  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-ord 6343  df-on 6344
This theorem is referenced by:  constrfiss  33749
  Copyright terms: Public domain W3C validator