Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneltri Structured version   Visualization version   GIF version

Theorem oneltri 43263
Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6424. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))

Proof of Theorem oneltri
StepHypRef Expression
1 eloni 6402 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6402 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordtri3or 6424 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 3orcomb 1094 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
64, 5sylib 218 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086   = wceq 1539  wcel 2108  Ord word 6391  Oncon0 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-ord 6395  df-on 6396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator