Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneltri Structured version   Visualization version   GIF version

Theorem oneltri 42473
Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6396. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltri ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))

Proof of Theorem oneltri
StepHypRef Expression
1 eloni 6374 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6374 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordtri3or 6396 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 3orcomb 1093 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
64, 5sylib 217 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2105  Ord word 6363  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator