Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALT Structured version   Visualization version   GIF version

Theorem ordelordALT 44527
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6354 using the Axiom of Regularity indirectly through dford2 9573. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. ordelordALT 44527 is ordelordALTVD 44856 without virtual deductions and was automatically derived from ordelordALTVD 44856 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALT ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelordALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtr 6346 . . . 4 (Ord 𝐴 → Tr 𝐴)
21adantr 480 . . 3 ((Ord 𝐴𝐵𝐴) → Tr 𝐴)
3 dford2 9573 . . . . . 6 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
43simprbi 496 . . . . 5 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
54adantr 480 . . . 4 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
6 3orcomb 1093 . . . . 5 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
762ralbii 3108 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
85, 7sylib 218 . . 3 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9 simpr 484 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
10 tratrb 44526 . . 3 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
112, 8, 9, 10syl3anc 1373 . 2 ((Ord 𝐴𝐵𝐴) → Tr 𝐵)
12 trss 5225 . . . 4 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
132, 9, 12sylc 65 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
14 ssralv2 44521 . . . 4 ((𝐵𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
1514ex 412 . . 3 (𝐵𝐴 → (𝐵𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
1613, 13, 5, 15syl3c 66 . 2 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
17 dford2 9573 . 2 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
1811, 16, 17sylanbrc 583 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  wcel 2109  wral 3044  wss 3914  Tr wtr 5214  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator