![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordelordALT | Structured version Visualization version GIF version |
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6343 using the Axiom of Regularity indirectly through dford2 9564. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. ordelordALT 42911 is ordelordALTVD 43241 without virtual deductions and was automatically derived from ordelordALTVD 43241 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordelordALT | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6335 | . . . 4 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Tr 𝐴) |
3 | dford2 9564 | . . . . . 6 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) | |
4 | 3 | simprbi 498 | . . . . 5 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
5 | 4 | adantr 482 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
6 | 3orcomb 1095 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) | |
7 | 6 | 2ralbii 3124 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
8 | 5, 7 | sylib 217 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) |
9 | simpr 486 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
10 | tratrb 42910 | . . 3 ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) | |
11 | 2, 8, 9, 10 | syl3anc 1372 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Tr 𝐵) |
12 | trss 5237 | . . . 4 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
13 | 2, 9, 12 | sylc 65 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
14 | ssralv2 42905 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) | |
15 | 14 | ex 414 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)))) |
16 | 13, 13, 5, 15 | syl3c 66 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
17 | dford2 9564 | . 2 ⊢ (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) | |
18 | 11, 16, 17 | sylanbrc 584 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ w3o 1087 ∈ wcel 2107 ∀wral 3061 ⊆ wss 3914 Tr wtr 5226 Ord word 6320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 ax-reg 9536 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-tr 5227 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-ord 6324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |