MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colcom Structured version   Visualization version   GIF version

Theorem colcom 28581
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
colrot (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
colcom (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))

Proof of Theorem colcom
StepHypRef Expression
1 colrot . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 3orcomb 1093 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))
3 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 eqid 2735 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
5 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 tglngval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . . . . 6 (𝜑𝑋𝑃)
8 tgcolg.z . . . . . 6 (𝜑𝑍𝑃)
9 tglngval.y . . . . . 6 (𝜑𝑌𝑃)
103, 4, 5, 6, 7, 8, 9tgbtwncomb 28512 . . . . 5 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋)))
113, 4, 5, 6, 7, 9, 8tgbtwncomb 28512 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋)))
123, 4, 5, 6, 8, 7, 9tgbtwncomb 28512 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍)))
1310, 11, 123orbi123d 1434 . . . 4 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
142, 13bitrid 283 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
15 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
163, 15, 5, 6, 7, 9, 8tgcolg 28577 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
173, 15, 5, 6, 9, 7, 8tgcolg 28577 . . 3 (𝜑 → ((𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
1814, 16, 173bitr4d 311 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)))
191, 18mpbid 232 1 (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476
This theorem is referenced by:  ncolcom  28584  tglineeltr  28654  mirtrcgr  28706  symquadlem  28712  midexlem  28715  colperpexlem1  28753  mideulem2  28757  opphllem  28758  hlpasch  28779  colhp  28793  trgcopy  28827  cgrg3col4  28876  tgasa1  28881
  Copyright terms: Public domain W3C validator