![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > colcom | Structured version Visualization version GIF version |
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
colcom | ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colrot | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | 3orcomb 1091 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
3 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | eqid 2726 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | tglngval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | tgcolg.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | tglngval.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 28410 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 28410 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 28410 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
13 | 10, 11, 12 | 3orbi123d 1432 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
14 | 2, 13 | bitrid 282 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
15 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | 3, 15, 5, 6, 7, 9, 8 | tgcolg 28475 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
17 | 3, 15, 5, 6, 9, 7, 8 | tgcolg 28475 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
18 | 14, 16, 17 | 3bitr4d 310 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))) |
19 | 1, 18 | mpbid 231 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∨ w3o 1083 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7413 Basecbs 17205 distcds 17267 TarskiGcstrkg 28348 Itvcitv 28354 LineGclng 28355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-trkgc 28369 df-trkgb 28370 df-trkgcb 28371 df-trkg 28374 |
This theorem is referenced by: ncolcom 28482 tglineeltr 28552 mirtrcgr 28604 symquadlem 28610 midexlem 28613 colperpexlem1 28651 mideulem2 28655 opphllem 28656 hlpasch 28677 colhp 28691 trgcopy 28725 cgrg3col4 28774 tgasa1 28779 |
Copyright terms: Public domain | W3C validator |