| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > colcom | Structured version Visualization version GIF version | ||
| Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Ref | Expression |
|---|---|
| colcom | ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colrot | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 2 | 3orcomb 1093 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
| 3 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 5 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | tglngval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglngval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | tgcolg.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | tglngval.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 28423 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
| 11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 28423 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
| 12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 28423 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
| 13 | 10, 11, 12 | 3orbi123d 1437 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 14 | 2, 13 | bitrid 283 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 15 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 16 | 3, 15, 5, 6, 7, 9, 8 | tgcolg 28488 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 17 | 3, 15, 5, 6, 9, 7, 8 | tgcolg 28488 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
| 18 | 14, 16, 17 | 3bitr4d 311 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))) |
| 19 | 1, 18 | mpbid 232 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: ncolcom 28495 tglineeltr 28565 mirtrcgr 28617 symquadlem 28623 midexlem 28626 colperpexlem1 28664 mideulem2 28668 opphllem 28669 hlpasch 28690 colhp 28704 trgcopy 28738 cgrg3col4 28787 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |