Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129d Structured version   Visualization version   GIF version

Theorem frege129d 40872
Description: If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 41101. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege129d.f (𝜑𝐹 ∈ V)
frege129d.a (𝜑𝐴 ∈ dom 𝐹)
frege129d.c (𝜑𝐶 = (𝐹𝐴))
frege129d.or (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
frege129d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege129d (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))

Proof of Theorem frege129d
StepHypRef Expression
1 frege129d.or . 2 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
2 frege129d.f . . . . . . . 8 (𝜑𝐹 ∈ V)
32adantr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐹 ∈ V)
4 frege129d.a . . . . . . . 8 (𝜑𝐴 ∈ dom 𝐹)
54adantr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴 ∈ dom 𝐹)
6 frege129d.c . . . . . . . 8 (𝜑𝐶 = (𝐹𝐴))
76adantr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐶 = (𝐹𝐴))
8 simpr 488 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴(t+‘𝐹)𝐵)
9 frege129d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
109adantr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → Fun 𝐹)
113, 5, 7, 8, 10frege126d 40871 . . . . . 6 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶))
12 biid 264 . . . . . . 7 (𝐶(t+‘𝐹)𝐵𝐶(t+‘𝐹)𝐵)
13 eqcom 2765 . . . . . . 7 (𝐶 = 𝐵𝐵 = 𝐶)
14 biid 264 . . . . . . 7 (𝐵(t+‘𝐹)𝐶𝐵(t+‘𝐹)𝐶)
1512, 13, 143orbi123i 1153 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
1611, 15sylib 221 . . . . 5 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
17 3orcomb 1091 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶))
18 3orrot 1089 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶) ↔ (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
1917, 18sylbb 222 . . . . 5 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2016, 19syl 17 . . . 4 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2120ex 416 . . 3 (𝜑 → (𝐴(t+‘𝐹)𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
22 simpr 488 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
236eqcomd 2764 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐶)
24 funbrfvb 6713 . . . . . . . . . . 11 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2524biimpd 232 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
269, 4, 25syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2723, 26mpd 15 . . . . . . . 8 (𝜑𝐴𝐹𝐶)
282, 27frege91d 40860 . . . . . . 7 (𝜑𝐴(t+‘𝐹)𝐶)
2928adantr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴(t+‘𝐹)𝐶)
3022, 29eqbrtrrd 5060 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵(t+‘𝐹)𝐶)
3130ex 416 . . . 4 (𝜑 → (𝐴 = 𝐵𝐵(t+‘𝐹)𝐶))
32 3mix1 1327 . . . 4 (𝐵(t+‘𝐹)𝐶 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
3331, 32syl6 35 . . 3 (𝜑 → (𝐴 = 𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
342adantr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐹 ∈ V)
35 funrel 6357 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
369, 35syl 17 . . . . . . . 8 (𝜑 → Rel 𝐹)
37 reltrclfv 14437 . . . . . . . 8 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
382, 36, 37syl2anc 587 . . . . . . 7 (𝜑 → Rel (t+‘𝐹))
39 brrelex1 5579 . . . . . . 7 ((Rel (t+‘𝐹) ∧ 𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
4038, 39sylan 583 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
41 fvex 6676 . . . . . . . 8 (𝐹𝐴) ∈ V
426, 41eqeltrdi 2860 . . . . . . 7 (𝜑𝐶 ∈ V)
4342adantr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐶 ∈ V)
444elexd 3430 . . . . . . 7 (𝜑𝐴 ∈ V)
4544adantr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴 ∈ V)
46 simpr 488 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐴)
4727adantr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴𝐹𝐶)
4834, 40, 43, 45, 46, 47frege96d 40858 . . . . 5 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐶)
4948ex 416 . . . 4 (𝜑 → (𝐵(t+‘𝐹)𝐴𝐵(t+‘𝐹)𝐶))
5049, 32syl6 35 . . 3 (𝜑 → (𝐵(t+‘𝐹)𝐴 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
5121, 33, 503jaod 1425 . 2 (𝜑 → ((𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
521, 51mpd 15 1 (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083   = wceq 1538  wcel 2111  Vcvv 3409   class class class wbr 5036  dom cdm 5528  Rel wrel 5533  Fun wfun 6334  cfv 6340  t+ctcl 14405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-seq 13432  df-trcl 14407  df-relexp 14440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator