Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129d Structured version   Visualization version   GIF version

Theorem frege129d 43746
Description: If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 43975. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege129d.f (𝜑𝐹 ∈ V)
frege129d.a (𝜑𝐴 ∈ dom 𝐹)
frege129d.c (𝜑𝐶 = (𝐹𝐴))
frege129d.or (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
frege129d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege129d (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))

Proof of Theorem frege129d
StepHypRef Expression
1 frege129d.or . 2 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
2 frege129d.f . . . . . . . 8 (𝜑𝐹 ∈ V)
32adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐹 ∈ V)
4 frege129d.a . . . . . . . 8 (𝜑𝐴 ∈ dom 𝐹)
54adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴 ∈ dom 𝐹)
6 frege129d.c . . . . . . . 8 (𝜑𝐶 = (𝐹𝐴))
76adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐶 = (𝐹𝐴))
8 simpr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴(t+‘𝐹)𝐵)
9 frege129d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
109adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → Fun 𝐹)
113, 5, 7, 8, 10frege126d 43745 . . . . . 6 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶))
12 biid 261 . . . . . . 7 (𝐶(t+‘𝐹)𝐵𝐶(t+‘𝐹)𝐵)
13 eqcom 2736 . . . . . . 7 (𝐶 = 𝐵𝐵 = 𝐶)
14 biid 261 . . . . . . 7 (𝐵(t+‘𝐹)𝐶𝐵(t+‘𝐹)𝐶)
1512, 13, 143orbi123i 1156 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
1611, 15sylib 218 . . . . 5 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
17 3orcomb 1093 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶))
18 3orrot 1091 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶) ↔ (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
1917, 18sylbb 219 . . . . 5 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2016, 19syl 17 . . . 4 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2120ex 412 . . 3 (𝜑 → (𝐴(t+‘𝐹)𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
22 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
236eqcomd 2735 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐶)
24 funbrfvb 6876 . . . . . . . . . . 11 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2524biimpd 229 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
269, 4, 25syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2723, 26mpd 15 . . . . . . . 8 (𝜑𝐴𝐹𝐶)
282, 27frege91d 43734 . . . . . . 7 (𝜑𝐴(t+‘𝐹)𝐶)
2928adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴(t+‘𝐹)𝐶)
3022, 29eqbrtrrd 5116 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵(t+‘𝐹)𝐶)
3130ex 412 . . . 4 (𝜑 → (𝐴 = 𝐵𝐵(t+‘𝐹)𝐶))
32 3mix1 1331 . . . 4 (𝐵(t+‘𝐹)𝐶 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
3331, 32syl6 35 . . 3 (𝜑 → (𝐴 = 𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
342adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐹 ∈ V)
35 funrel 6499 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
369, 35syl 17 . . . . . . . 8 (𝜑 → Rel 𝐹)
37 reltrclfv 14924 . . . . . . . 8 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
382, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → Rel (t+‘𝐹))
39 brrelex1 5672 . . . . . . 7 ((Rel (t+‘𝐹) ∧ 𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
4038, 39sylan 580 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
41 fvex 6835 . . . . . . . 8 (𝐹𝐴) ∈ V
426, 41eqeltrdi 2836 . . . . . . 7 (𝜑𝐶 ∈ V)
4342adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐶 ∈ V)
444elexd 3460 . . . . . . 7 (𝜑𝐴 ∈ V)
4544adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴 ∈ V)
46 simpr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐴)
4727adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴𝐹𝐶)
4834, 40, 43, 45, 46, 47frege96d 43732 . . . . 5 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐶)
4948ex 412 . . . 4 (𝜑 → (𝐵(t+‘𝐹)𝐴𝐵(t+‘𝐹)𝐶))
5049, 32syl6 35 . . 3 (𝜑 → (𝐵(t+‘𝐹)𝐴 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
5121, 33, 503jaod 1431 . 2 (𝜑 → ((𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
521, 51mpd 15 1 (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3436   class class class wbr 5092  dom cdm 5619  Rel wrel 5624  Fun wfun 6476  cfv 6482  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-trcl 14894  df-relexp 14927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator