Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129d Structured version   Visualization version   GIF version

Theorem frege129d 43753
Description: If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 43982. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege129d.f (𝜑𝐹 ∈ V)
frege129d.a (𝜑𝐴 ∈ dom 𝐹)
frege129d.c (𝜑𝐶 = (𝐹𝐴))
frege129d.or (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
frege129d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege129d (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))

Proof of Theorem frege129d
StepHypRef Expression
1 frege129d.or . 2 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
2 frege129d.f . . . . . . . 8 (𝜑𝐹 ∈ V)
32adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐹 ∈ V)
4 frege129d.a . . . . . . . 8 (𝜑𝐴 ∈ dom 𝐹)
54adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴 ∈ dom 𝐹)
6 frege129d.c . . . . . . . 8 (𝜑𝐶 = (𝐹𝐴))
76adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐶 = (𝐹𝐴))
8 simpr 484 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴(t+‘𝐹)𝐵)
9 frege129d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
109adantr 480 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → Fun 𝐹)
113, 5, 7, 8, 10frege126d 43752 . . . . . 6 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶))
12 biid 261 . . . . . . 7 (𝐶(t+‘𝐹)𝐵𝐶(t+‘𝐹)𝐵)
13 eqcom 2742 . . . . . . 7 (𝐶 = 𝐵𝐵 = 𝐶)
14 biid 261 . . . . . . 7 (𝐵(t+‘𝐹)𝐶𝐵(t+‘𝐹)𝐶)
1512, 13, 143orbi123i 1155 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
1611, 15sylib 218 . . . . 5 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
17 3orcomb 1093 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶))
18 3orrot 1091 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶) ↔ (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
1917, 18sylbb 219 . . . . 5 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2016, 19syl 17 . . . 4 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2120ex 412 . . 3 (𝜑 → (𝐴(t+‘𝐹)𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
22 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
236eqcomd 2741 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐶)
24 funbrfvb 6962 . . . . . . . . . . 11 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2524biimpd 229 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
269, 4, 25syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2723, 26mpd 15 . . . . . . . 8 (𝜑𝐴𝐹𝐶)
282, 27frege91d 43741 . . . . . . 7 (𝜑𝐴(t+‘𝐹)𝐶)
2928adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴(t+‘𝐹)𝐶)
3022, 29eqbrtrrd 5172 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵(t+‘𝐹)𝐶)
3130ex 412 . . . 4 (𝜑 → (𝐴 = 𝐵𝐵(t+‘𝐹)𝐶))
32 3mix1 1329 . . . 4 (𝐵(t+‘𝐹)𝐶 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
3331, 32syl6 35 . . 3 (𝜑 → (𝐴 = 𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
342adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐹 ∈ V)
35 funrel 6585 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
369, 35syl 17 . . . . . . . 8 (𝜑 → Rel 𝐹)
37 reltrclfv 15053 . . . . . . . 8 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
382, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → Rel (t+‘𝐹))
39 brrelex1 5742 . . . . . . 7 ((Rel (t+‘𝐹) ∧ 𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
4038, 39sylan 580 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
41 fvex 6920 . . . . . . . 8 (𝐹𝐴) ∈ V
426, 41eqeltrdi 2847 . . . . . . 7 (𝜑𝐶 ∈ V)
4342adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐶 ∈ V)
444elexd 3502 . . . . . . 7 (𝜑𝐴 ∈ V)
4544adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴 ∈ V)
46 simpr 484 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐴)
4727adantr 480 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴𝐹𝐶)
4834, 40, 43, 45, 46, 47frege96d 43739 . . . . 5 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐶)
4948ex 412 . . . 4 (𝜑 → (𝐵(t+‘𝐹)𝐴𝐵(t+‘𝐹)𝐶))
5049, 32syl6 35 . . 3 (𝜑 → (𝐵(t+‘𝐹)𝐴 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
5121, 33, 503jaod 1428 . 2 (𝜑 → ((𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
521, 51mpd 15 1 (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148  dom cdm 5689  Rel wrel 5694  Fun wfun 6557  cfv 6563  t+ctcl 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-trcl 15023  df-relexp 15056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator