Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129d Structured version   Visualization version   GIF version

Theorem frege129d 38838
Description: If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 39068. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege129d.f (𝜑𝐹 ∈ V)
frege129d.a (𝜑𝐴 ∈ dom 𝐹)
frege129d.c (𝜑𝐶 = (𝐹𝐴))
frege129d.or (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
frege129d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege129d (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))

Proof of Theorem frege129d
StepHypRef Expression
1 frege129d.or . 2 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
2 frege129d.f . . . . . . . 8 (𝜑𝐹 ∈ V)
32adantr 473 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐹 ∈ V)
4 frege129d.a . . . . . . . 8 (𝜑𝐴 ∈ dom 𝐹)
54adantr 473 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴 ∈ dom 𝐹)
6 frege129d.c . . . . . . . 8 (𝜑𝐶 = (𝐹𝐴))
76adantr 473 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐶 = (𝐹𝐴))
8 simpr 478 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → 𝐴(t+‘𝐹)𝐵)
9 frege129d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
109adantr 473 . . . . . . 7 ((𝜑𝐴(t+‘𝐹)𝐵) → Fun 𝐹)
113, 5, 7, 8, 10frege126d 38837 . . . . . 6 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶))
12 biid 253 . . . . . . 7 (𝐶(t+‘𝐹)𝐵𝐶(t+‘𝐹)𝐵)
13 eqcom 2806 . . . . . . 7 (𝐶 = 𝐵𝐵 = 𝐶)
14 biid 253 . . . . . . 7 (𝐵(t+‘𝐹)𝐶𝐵(t+‘𝐹)𝐶)
1512, 13, 143orbi123i 1196 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐶 = 𝐵𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
1611, 15sylib 210 . . . . 5 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶))
17 3orcomb 1115 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) ↔ (𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶))
18 3orrot 1113 . . . . . 6 ((𝐶(t+‘𝐹)𝐵𝐵(t+‘𝐹)𝐶𝐵 = 𝐶) ↔ (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
1917, 18sylbb 211 . . . . 5 ((𝐶(t+‘𝐹)𝐵𝐵 = 𝐶𝐵(t+‘𝐹)𝐶) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2016, 19syl 17 . . . 4 ((𝜑𝐴(t+‘𝐹)𝐵) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
2120ex 402 . . 3 (𝜑 → (𝐴(t+‘𝐹)𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
22 simpr 478 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
236eqcomd 2805 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐶)
24 funbrfvb 6462 . . . . . . . . . . 11 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2524biimpd 221 . . . . . . . . . 10 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
269, 4, 25syl2anc 580 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) = 𝐶𝐴𝐹𝐶))
2723, 26mpd 15 . . . . . . . 8 (𝜑𝐴𝐹𝐶)
282, 27frege91d 38826 . . . . . . 7 (𝜑𝐴(t+‘𝐹)𝐶)
2928adantr 473 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴(t+‘𝐹)𝐶)
3022, 29eqbrtrrd 4867 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵(t+‘𝐹)𝐶)
3130ex 402 . . . 4 (𝜑 → (𝐴 = 𝐵𝐵(t+‘𝐹)𝐶))
32 3mix1 1430 . . . 4 (𝐵(t+‘𝐹)𝐶 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
3331, 32syl6 35 . . 3 (𝜑 → (𝐴 = 𝐵 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
342adantr 473 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐹 ∈ V)
35 funrel 6118 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
369, 35syl 17 . . . . . . . 8 (𝜑 → Rel 𝐹)
37 reltrclfv 14099 . . . . . . . 8 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
382, 36, 37syl2anc 580 . . . . . . 7 (𝜑 → Rel (t+‘𝐹))
39 brrelex1 5360 . . . . . . 7 ((Rel (t+‘𝐹) ∧ 𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
4038, 39sylan 576 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵 ∈ V)
41 fvex 6424 . . . . . . . 8 (𝐹𝐴) ∈ V
426, 41syl6eqel 2886 . . . . . . 7 (𝜑𝐶 ∈ V)
4342adantr 473 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐶 ∈ V)
44 elex 3400 . . . . . . . 8 (𝐴 ∈ dom 𝐹𝐴 ∈ V)
454, 44syl 17 . . . . . . 7 (𝜑𝐴 ∈ V)
4645adantr 473 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴 ∈ V)
47 simpr 478 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐴)
4827adantr 473 . . . . . 6 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐴𝐹𝐶)
4934, 40, 43, 46, 47, 48frege96d 38824 . . . . 5 ((𝜑𝐵(t+‘𝐹)𝐴) → 𝐵(t+‘𝐹)𝐶)
5049ex 402 . . . 4 (𝜑 → (𝐵(t+‘𝐹)𝐴𝐵(t+‘𝐹)𝐶))
5150, 32syl6 35 . . 3 (𝜑 → (𝐵(t+‘𝐹)𝐴 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
5221, 33, 513jaod 1554 . 2 (𝜑 → ((𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴) → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵)))
531, 52mpd 15 1 (𝜑 → (𝐵(t+‘𝐹)𝐶𝐵 = 𝐶𝐶(t+‘𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3o 1107   = wceq 1653  wcel 2157  Vcvv 3385   class class class wbr 4843  dom cdm 5312  Rel wrel 5317  Fun wfun 6095  cfv 6101  t+ctcl 14067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-seq 13056  df-trcl 14069  df-relexp 14102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator