Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xihopellsmN | Structured version Visualization version GIF version |
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xihopellsm.b | ⊢ 𝐵 = (Base‘𝐾) |
xihopellsm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
xihopellsm.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
xihopellsm.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
xihopellsm.a | ⊢ 𝐴 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
xihopellsm.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
xihopellsm.l | ⊢ 𝐿 = (LSubSp‘𝑈) |
xihopellsm.p | ⊢ ⊕ = (LSSum‘𝑈) |
xihopellsm.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
xihopellsm.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
xihopellsm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
xihopellsm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
xihopellsmN | ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xihopellsm.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | xihopellsm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | xihopellsm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | xihopellsm.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | xihopellsm.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | xihopellsm.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2737 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | 3, 4, 5, 6, 7 | dihlss 39001 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
9 | 1, 2, 8 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
10 | xihopellsm.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 3, 4, 5, 6, 7 | dihlss 39001 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
12 | 1, 10, 11 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
13 | eqid 2737 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
14 | xihopellsm.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
15 | 4, 6, 13, 7, 14 | dvhopellsm 38868 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
16 | 1, 9, 12, 15 | syl3anc 1373 | . 2 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
17 | xihopellsm.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | xihopellsm.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
19 | 1 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | 2 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 𝑋 ∈ 𝐵) |
21 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) | |
22 | 3, 4, 17, 18, 5, 19, 20, 21 | dihopcl 39004 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) |
23 | 1 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 10 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 𝑌 ∈ 𝐵) |
25 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) | |
26 | 3, 4, 17, 18, 5, 23, 24, 25 | dihopcl 39004 | . . . . . 6 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) |
27 | 22, 26 | anim12dan 622 | . . . . 5 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) |
28 | 1 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simprl 771 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) | |
30 | simprr 773 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) | |
31 | xihopellsm.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
32 | 4, 17, 18, 31, 6, 13 | dvhopvadd2 38845 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
33 | 28, 29, 30, 32 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
34 | 33 | eqeq2d 2748 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉)) |
35 | vex 3412 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
36 | vex 3412 | . . . . . . . 8 ⊢ ℎ ∈ V | |
37 | 35, 36 | coex 7708 | . . . . . . 7 ⊢ (𝑔 ∘ ℎ) ∈ V |
38 | ovex 7246 | . . . . . . 7 ⊢ (𝑡𝐴𝑢) ∈ V | |
39 | 37, 38 | opth2 5364 | . . . . . 6 ⊢ (〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉 ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))) |
40 | 34, 39 | bitrdi 290 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
41 | 27, 40 | syldan 594 | . . . 4 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
42 | 41 | pm5.32da 582 | . . 3 ⊢ (𝜑 → (((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
43 | 42 | 4exbidv 1934 | . 2 ⊢ (𝜑 → (∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
44 | 16, 43 | bitrd 282 | 1 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 〈cop 4547 ↦ cmpt 5135 ∘ ccom 5555 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 Basecbs 16760 +gcplusg 16802 LSSumclsm 19023 LSubSpclss 19968 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 TEndoctendo 38503 DVecHcdvh 38829 DIsoHcdih 38979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-undef 8015 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-0g 16946 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 df-tendo 38506 df-edring 38508 df-disoa 38780 df-dvech 38830 df-dib 38890 df-dic 38924 df-dih 38980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |