MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brecop Structured version   Visualization version   GIF version

Theorem brecop 8385
Description: Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
Hypotheses
Ref Expression
brecop.1 ∈ V
brecop.2 Er (𝐺 × 𝐺)
brecop.4 𝐻 = ((𝐺 × 𝐺) / )
brecop.5 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))}
brecop.6 ((((𝑧𝐺𝑤𝐺) ∧ (𝐴𝐺𝐵𝐺)) ∧ ((𝑣𝐺𝑢𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))
Assertion
Ref Expression
brecop (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐻,𝑦   𝑧,𝐺,𝑤,𝑣,𝑢   𝜑,𝑥,𝑦   𝜓,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢)   𝜓(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑧,𝑤,𝑣,𝑢)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem brecop
StepHypRef Expression
1 brecop.1 . . . 4 ∈ V
2 brecop.4 . . . 4 𝐻 = ((𝐺 × 𝐺) / )
31, 2ecopqsi 8349 . . 3 ((𝐴𝐺𝐵𝐺) → [⟨𝐴, 𝐵⟩] 𝐻)
41, 2ecopqsi 8349 . . 3 ((𝐶𝐺𝐷𝐺) → [⟨𝐶, 𝐷⟩] 𝐻)
5 df-br 5064 . . . . 5 ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ↔ ⟨[⟨𝐴, 𝐵⟩] , [⟨𝐶, 𝐷⟩] ⟩ ∈ )
6 brecop.5 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))}
76eleq2i 2909 . . . . 5 (⟨[⟨𝐴, 𝐵⟩] , [⟨𝐶, 𝐷⟩] ⟩ ∈ ↔ ⟨[⟨𝐴, 𝐵⟩] , [⟨𝐶, 𝐷⟩] ⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))})
85, 7bitri 276 . . . 4 ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ↔ ⟨[⟨𝐴, 𝐵⟩] , [⟨𝐶, 𝐷⟩] ⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))})
9 eqeq1 2830 . . . . . . . 8 (𝑥 = [⟨𝐴, 𝐵⟩] → (𝑥 = [⟨𝑧, 𝑤⟩] ↔ [⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ))
109anbi1d 629 . . . . . . 7 (𝑥 = [⟨𝐴, 𝐵⟩] → ((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ↔ ([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] )))
1110anbi1d 629 . . . . . 6 (𝑥 = [⟨𝐴, 𝐵⟩] → (((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ (([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
12114exbidv 1920 . . . . 5 (𝑥 = [⟨𝐴, 𝐵⟩] → (∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
13 eqeq1 2830 . . . . . . . 8 (𝑦 = [⟨𝐶, 𝐷⟩] → (𝑦 = [⟨𝑣, 𝑢⟩] ↔ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ))
1413anbi2d 628 . . . . . . 7 (𝑦 = [⟨𝐶, 𝐷⟩] → (([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ↔ ([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] )))
1514anbi1d 629 . . . . . 6 (𝑦 = [⟨𝐶, 𝐷⟩] → ((([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ (([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
16154exbidv 1920 . . . . 5 (𝑦 = [⟨𝐶, 𝐷⟩] → (∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
1712, 16opelopab2 5425 . . . 4 (([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻) → (⟨[⟨𝐴, 𝐵⟩] , [⟨𝐶, 𝐷⟩] ⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))} ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
188, 17syl5bb 284 . . 3 (([⟨𝐴, 𝐵⟩] 𝐻 ∧ [⟨𝐶, 𝐷⟩] 𝐻) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
193, 4, 18syl2an 595 . 2 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑)))
20 opeq12 4804 . . . . . 6 ((𝑧 = 𝐴𝑤 = 𝐵) → ⟨𝑧, 𝑤⟩ = ⟨𝐴, 𝐵⟩)
2120eceq1d 8323 . . . . 5 ((𝑧 = 𝐴𝑤 = 𝐵) → [⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] )
22 opeq12 4804 . . . . . 6 ((𝑣 = 𝐶𝑢 = 𝐷) → ⟨𝑣, 𝑢⟩ = ⟨𝐶, 𝐷⟩)
2322eceq1d 8323 . . . . 5 ((𝑣 = 𝐶𝑢 = 𝐷) → [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] )
2421, 23anim12i 612 . . . 4 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ))
25 opelxpi 5591 . . . . . . . 8 ((𝐴𝐺𝐵𝐺) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))
26 opelxp 5590 . . . . . . . . 9 (⟨𝑧, 𝑤⟩ ∈ (𝐺 × 𝐺) ↔ (𝑧𝐺𝑤𝐺))
27 brecop.2 . . . . . . . . . . 11 Er (𝐺 × 𝐺)
2827a1i 11 . . . . . . . . . 10 ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] Er (𝐺 × 𝐺))
29 id 22 . . . . . . . . . 10 ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] → [⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] )
3028, 29ereldm 8332 . . . . . . . . 9 ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] → (⟨𝑧, 𝑤⟩ ∈ (𝐺 × 𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺)))
3126, 30syl5bbr 286 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] → ((𝑧𝐺𝑤𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺)))
3225, 31syl5ibr 247 . . . . . . 7 ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] → ((𝐴𝐺𝐵𝐺) → (𝑧𝐺𝑤𝐺)))
33 opelxpi 5591 . . . . . . . 8 ((𝐶𝐺𝐷𝐺) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))
34 opelxp 5590 . . . . . . . . 9 (⟨𝑣, 𝑢⟩ ∈ (𝐺 × 𝐺) ↔ (𝑣𝐺𝑢𝐺))
3527a1i 11 . . . . . . . . . 10 ([⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] Er (𝐺 × 𝐺))
36 id 22 . . . . . . . . . 10 ([⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] → [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] )
3735, 36ereldm 8332 . . . . . . . . 9 ([⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] → (⟨𝑣, 𝑢⟩ ∈ (𝐺 × 𝐺) ↔ ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺)))
3834, 37syl5bbr 286 . . . . . . . 8 ([⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] → ((𝑣𝐺𝑢𝐺) ↔ ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺)))
3933, 38syl5ibr 247 . . . . . . 7 ([⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] → ((𝐶𝐺𝐷𝐺) → (𝑣𝐺𝑢𝐺)))
4032, 39im2anan9 619 . . . . . 6 (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ((𝑧𝐺𝑤𝐺) ∧ (𝑣𝐺𝑢𝐺))))
41 brecop.6 . . . . . . . . 9 ((((𝑧𝐺𝑤𝐺) ∧ (𝐴𝐺𝐵𝐺)) ∧ ((𝑣𝐺𝑢𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))
4241an4s 656 . . . . . . . 8 ((((𝑧𝐺𝑤𝐺) ∧ (𝑣𝐺𝑢𝐺)) ∧ ((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))
4342ex 413 . . . . . . 7 (((𝑧𝐺𝑤𝐺) ∧ (𝑣𝐺𝑢𝐺)) → (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓))))
4443com13 88 . . . . . 6 (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (((𝑧𝐺𝑤𝐺) ∧ (𝑣𝐺𝑢𝐺)) → (𝜑𝜓))))
4540, 44mpdd 43 . . . . 5 (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (𝜑𝜓)))
4645pm5.74d 274 . . . 4 (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → ((((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜑) ↔ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜓)))
4724, 46cgsex4g 3545 . . 3 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (∃𝑧𝑤𝑣𝑢(([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) ∧ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜑)) ↔ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜓)))
48 eqcom 2833 . . . . . . 7 ([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ↔ [⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] )
49 eqcom 2833 . . . . . . 7 ([⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ↔ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] )
5048, 49anbi12i 626 . . . . . 6 (([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ↔ ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ))
5150a1i 11 . . . . 5 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ↔ ([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] )))
52 biimt 362 . . . . 5 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (𝜑 ↔ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜑)))
5351, 52anbi12d 630 . . . 4 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ((([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) ∧ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜑))))
54534exbidv 1920 . . 3 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ ∃𝑧𝑤𝑣𝑢(([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) ∧ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜑))))
55 biimt 362 . . 3 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (𝜓 ↔ (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → 𝜓)))
5647, 54, 553bitr4d 312 . 2 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → (∃𝑧𝑤𝑣𝑢(([⟨𝐴, 𝐵⟩] = [⟨𝑧, 𝑤⟩] ∧ [⟨𝐶, 𝐷⟩] = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑) ↔ 𝜓))
5719, 56bitrd 280 1 (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  Vcvv 3500  cop 4570   class class class wbr 5063  {copab 5125   × cxp 5552   Er wer 8281  [cec 8282   / cqs 8283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-xp 5560  df-cnv 5562  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-er 8284  df-ec 8286  df-qs 8290
This theorem is referenced by:  ltsrpr  10493
  Copyright terms: Public domain W3C validator