Step | Hyp | Ref
| Expression |
1 | | brecop.1 |
. . . 4
⊢ ∼ ∈
V |
2 | | brecop.4 |
. . . 4
⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) |
3 | 1, 2 | ecopqsi 8714 |
. . 3
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) → [⟨𝐴, 𝐵⟩] ∼ ∈ 𝐻) |
4 | 1, 2 | ecopqsi 8714 |
. . 3
⊢ ((𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) → [⟨𝐶, 𝐷⟩] ∼ ∈ 𝐻) |
5 | | df-br 5107 |
. . . . 5
⊢
([⟨𝐴, 𝐵⟩] ∼ ≤ [⟨𝐶, 𝐷⟩] ∼ ↔
⟨[⟨𝐴, 𝐵⟩] ∼ , [⟨𝐶, 𝐷⟩] ∼ ⟩ ∈ ≤
) |
6 | | brecop.5 |
. . . . . 6
⊢ ≤ =
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))} |
7 | 6 | eleq2i 2830 |
. . . . 5
⊢
(⟨[⟨𝐴,
𝐵⟩] ∼ , [⟨𝐶, 𝐷⟩] ∼ ⟩ ∈ ≤ ↔
⟨[⟨𝐴, 𝐵⟩] ∼ , [⟨𝐶, 𝐷⟩] ∼ ⟩ ∈
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))}) |
8 | 5, 7 | bitri 275 |
. . . 4
⊢
([⟨𝐴, 𝐵⟩] ∼ ≤ [⟨𝐶, 𝐷⟩] ∼ ↔
⟨[⟨𝐴, 𝐵⟩] ∼ , [⟨𝐶, 𝐷⟩] ∼ ⟩ ∈
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))}) |
9 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = [⟨𝐴, 𝐵⟩] ∼ → (𝑥 = [⟨𝑧, 𝑤⟩] ∼ ↔ [⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ )) |
10 | 9 | anbi1d 631 |
. . . . . . 7
⊢ (𝑥 = [⟨𝐴, 𝐵⟩] ∼ → ((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ↔
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼
))) |
11 | 10 | anbi1d 631 |
. . . . . 6
⊢ (𝑥 = [⟨𝐴, 𝐵⟩] ∼ → (((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ (([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
12 | 11 | 4exbidv 1930 |
. . . . 5
⊢ (𝑥 = [⟨𝐴, 𝐵⟩] ∼ →
(∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
13 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑦 = [⟨𝐶, 𝐷⟩] ∼ → (𝑦 = [⟨𝑣, 𝑢⟩] ∼ ↔ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ )) |
14 | 13 | anbi2d 630 |
. . . . . . 7
⊢ (𝑦 = [⟨𝐶, 𝐷⟩] ∼ →
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ↔
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼
))) |
15 | 14 | anbi1d 631 |
. . . . . 6
⊢ (𝑦 = [⟨𝐶, 𝐷⟩] ∼ →
((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ (([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
16 | 15 | 4exbidv 1930 |
. . . . 5
⊢ (𝑦 = [⟨𝐶, 𝐷⟩] ∼ →
(∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
17 | 12, 16 | opelopab2 5499 |
. . . 4
⊢
(([⟨𝐴, 𝐵⟩] ∼ ∈ 𝐻 ∧ [⟨𝐶, 𝐷⟩] ∼ ∈ 𝐻) → (⟨[⟨𝐴, 𝐵⟩] ∼ , [⟨𝐶, 𝐷⟩] ∼ ⟩ ∈
{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ∼ ∧ 𝑦 = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))} ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
18 | 8, 17 | bitrid 283 |
. . 3
⊢
(([⟨𝐴, 𝐵⟩] ∼ ∈ 𝐻 ∧ [⟨𝐶, 𝐷⟩] ∼ ∈ 𝐻) → ([⟨𝐴, 𝐵⟩] ∼ ≤ [⟨𝐶, 𝐷⟩] ∼ ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
19 | 3, 4, 18 | syl2an 597 |
. 2
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([⟨𝐴, 𝐵⟩] ∼ ≤ [⟨𝐶, 𝐷⟩] ∼ ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑))) |
20 | | opeq12 4833 |
. . . . . 6
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → ⟨𝑧, 𝑤⟩ = ⟨𝐴, 𝐵⟩) |
21 | 20 | eceq1d 8688 |
. . . . 5
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → [⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ) |
22 | | opeq12 4833 |
. . . . . 6
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐷) → ⟨𝑣, 𝑢⟩ = ⟨𝐶, 𝐷⟩) |
23 | 22 | eceq1d 8688 |
. . . . 5
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐷) → [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) |
24 | 21, 23 | anim12i 614 |
. . . 4
⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ (𝑣 = 𝐶 ∧ 𝑢 = 𝐷)) → ([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ )) |
25 | | opelxpi 5671 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) → ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺)) |
26 | | opelxp 5670 |
. . . . . . . . 9
⊢
(⟨𝑧, 𝑤⟩ ∈ (𝐺 × 𝐺) ↔ (𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺)) |
27 | | brecop.2 |
. . . . . . . . . . 11
⊢ ∼ Er
(𝐺 × 𝐺) |
28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ → ∼ Er
(𝐺 × 𝐺)) |
29 | | id 22 |
. . . . . . . . . 10
⊢
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ → [⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ) |
30 | 28, 29 | ereldm 8697 |
. . . . . . . . 9
⊢
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ → (⟨𝑧, 𝑤⟩ ∈ (𝐺 × 𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))) |
31 | 26, 30 | bitr3id 285 |
. . . . . . . 8
⊢
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ → ((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐺 × 𝐺))) |
32 | 25, 31 | syl5ibr 246 |
. . . . . . 7
⊢
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) → (𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺))) |
33 | | opelxpi 5671 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) → ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺)) |
34 | | opelxp 5670 |
. . . . . . . . 9
⊢
(⟨𝑣, 𝑢⟩ ∈ (𝐺 × 𝐺) ↔ (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺)) |
35 | 27 | a1i 11 |
. . . . . . . . . 10
⊢
([⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ → ∼ Er
(𝐺 × 𝐺)) |
36 | | id 22 |
. . . . . . . . . 10
⊢
([⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ → [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) |
37 | 35, 36 | ereldm 8697 |
. . . . . . . . 9
⊢
([⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ → (⟨𝑣, 𝑢⟩ ∈ (𝐺 × 𝐺) ↔ ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))) |
38 | 34, 37 | bitr3id 285 |
. . . . . . . 8
⊢
([⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ → ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ↔ ⟨𝐶, 𝐷⟩ ∈ (𝐺 × 𝐺))) |
39 | 33, 38 | syl5ibr 246 |
. . . . . . 7
⊢
([⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ → ((𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺) → (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺))) |
40 | 32, 39 | im2anan9 621 |
. . . . . 6
⊢
(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺)))) |
41 | | brecop.6 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (𝜑 ↔ 𝜓))) |
42 | 41 | an4s 659 |
. . . . . . . 8
⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺)) ∧ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (𝜑 ↔ 𝜓))) |
43 | 42 | ex 414 |
. . . . . . 7
⊢ (((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺)) → (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (𝜑 ↔ 𝜓)))) |
44 | 43 | com13 88 |
. . . . . 6
⊢
(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺)) → (𝜑 ↔ 𝜓)))) |
45 | 40, 44 | mpdd 43 |
. . . . 5
⊢
(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (𝜑 ↔ 𝜓))) |
46 | 45 | pm5.74d 273 |
. . . 4
⊢
(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) → ((((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜑) ↔ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜓))) |
47 | 24, 46 | cgsex4g 3491 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜑)) ↔ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜓))) |
48 | | eqcom 2744 |
. . . . . . 7
⊢
([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ↔ [⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ) |
49 | | eqcom 2744 |
. . . . . . 7
⊢
([⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ↔ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) |
50 | 48, 49 | anbi12i 628 |
. . . . . 6
⊢
(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ↔
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ )) |
51 | 50 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ↔
([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼
))) |
52 | | biimt 361 |
. . . . 5
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (𝜑 ↔ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜑))) |
53 | 51, 52 | anbi12d 632 |
. . . 4
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ((([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ (([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜑)))) |
54 | 53 | 4exbidv 1930 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ ∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝑧, 𝑤⟩] ∼ = [⟨𝐴, 𝐵⟩] ∼ ∧ [⟨𝑣, 𝑢⟩] ∼ = [⟨𝐶, 𝐷⟩] ∼ ) ∧ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜑)))) |
55 | | biimt 361 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (𝜓 ↔ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → 𝜓))) |
56 | 47, 54, 55 | 3bitr4d 311 |
. 2
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → (∃𝑧∃𝑤∃𝑣∃𝑢(([⟨𝐴, 𝐵⟩] ∼ = [⟨𝑧, 𝑤⟩] ∼ ∧ [⟨𝐶, 𝐷⟩] ∼ = [⟨𝑣, 𝑢⟩] ∼ ) ∧ 𝜑) ↔ 𝜓)) |
57 | 19, 56 | bitrd 279 |
1
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([⟨𝐴, 𝐵⟩] ∼ ≤ [⟨𝐶, 𝐷⟩] ∼ ↔ 𝜓)) |