MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex4g Structured version   Visualization version   GIF version

Theorem copsex4g 5409
Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
Hypothesis
Ref Expression
copsex4g.1 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))
Assertion
Ref Expression
copsex4g (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝜓,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem copsex4g
StepHypRef Expression
1 eqcom 2745 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2 vex 3436 . . . . . . . 8 𝑥 ∈ V
3 vex 3436 . . . . . . . 8 𝑦 ∈ V
42, 3opth 5391 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4bitri 274 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
6 eqcom 2745 . . . . . . 7 (⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝐶, 𝐷⟩)
7 vex 3436 . . . . . . . 8 𝑧 ∈ V
8 vex 3436 . . . . . . . 8 𝑤 ∈ V
97, 8opth 5391 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑧 = 𝐶𝑤 = 𝐷))
106, 9bitri 274 . . . . . 6 (⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝑧 = 𝐶𝑤 = 𝐷))
115, 10anbi12i 627 . . . . 5 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)))
1211anbi1i 624 . . . 4 (((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑))
1312a1i 11 . . 3 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑)))
14134exbidv 1929 . 2 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ ∃𝑥𝑦𝑧𝑤(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑)))
15 id 22 . . 3 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → ((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)))
16 copsex4g.1 . . 3 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))
1715, 16cgsex4g 3476 . 2 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑) ↔ 𝜓))
1814, 17bitrd 278 1 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  opbrop  5684  ov3  7435
  Copyright terms: Public domain W3C validator