Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopellsm | Structured version Visualization version GIF version |
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) |
Ref | Expression |
---|---|
dihopellsm.b | ⊢ 𝐵 = (Base‘𝐾) |
dihopellsm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihopellsm.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihopellsm.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihopellsm.a | ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) |
dihopellsm.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihopellsm.l | ⊢ 𝐿 = (LSubSp‘𝑈) |
dihopellsm.p | ⊢ ⊕ = (LSSum‘𝑈) |
dihopellsm.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihopellsm.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihopellsm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dihopellsm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
dihopellsm | ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihopellsm.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihopellsm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | dihopellsm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dihopellsm.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihopellsm.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dihopellsm.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | 3, 4, 5, 6, 7 | dihlss 39264 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
9 | 1, 2, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
10 | dihopellsm.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 3, 4, 5, 6, 7 | dihlss 39264 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
12 | 1, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
13 | eqid 2738 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
14 | dihopellsm.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
15 | 4, 6, 13, 7, 14 | dvhopellsm 39131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
16 | 1, 9, 12, 15 | syl3anc 1370 | . 2 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
17 | dihopellsm.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | dihopellsm.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
19 | 1 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 𝑋 ∈ 𝐵) |
21 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) | |
22 | 3, 4, 17, 18, 5, 19, 20, 21 | dihopcl 39267 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) |
23 | 1 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 10 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 𝑌 ∈ 𝐵) |
25 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) | |
26 | 3, 4, 17, 18, 5, 23, 24, 25 | dihopcl 39267 | . . . . . 6 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) |
27 | 22, 26 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) |
28 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simprl 768 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) | |
30 | simprr 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) | |
31 | dihopellsm.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) | |
32 | 4, 17, 18, 31, 6, 13 | dvhopvadd2 39108 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
33 | 28, 29, 30, 32 | syl3anc 1370 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
34 | 33 | eqeq2d 2749 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉)) |
35 | vex 3436 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
36 | vex 3436 | . . . . . . . 8 ⊢ ℎ ∈ V | |
37 | 35, 36 | coex 7777 | . . . . . . 7 ⊢ (𝑔 ∘ ℎ) ∈ V |
38 | ovex 7308 | . . . . . . 7 ⊢ (𝑡𝐴𝑢) ∈ V | |
39 | 37, 38 | opth2 5395 | . . . . . 6 ⊢ (〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉 ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))) |
40 | 34, 39 | bitrdi 287 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
41 | 27, 40 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
42 | 41 | pm5.32da 579 | . . 3 ⊢ (𝜑 → (((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
43 | 42 | 4exbidv 1929 | . 2 ⊢ (𝜑 → (∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
44 | 16, 43 | bitrd 278 | 1 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 〈cop 4567 ↦ cmpt 5157 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 LSSumclsm 19239 LSubSpclss 20193 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 DVecHcdvh 39092 DIsoHcdih 39242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 df-edring 38771 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 |
This theorem is referenced by: dihjatcclem4 39435 |
Copyright terms: Public domain | W3C validator |