![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopellsm | Structured version Visualization version GIF version |
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) |
Ref | Expression |
---|---|
dihopellsm.b | ⊢ 𝐵 = (Base‘𝐾) |
dihopellsm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihopellsm.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihopellsm.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihopellsm.a | ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) |
dihopellsm.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihopellsm.l | ⊢ 𝐿 = (LSubSp‘𝑈) |
dihopellsm.p | ⊢ ⊕ = (LSSum‘𝑈) |
dihopellsm.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihopellsm.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihopellsm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dihopellsm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
dihopellsm | ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihopellsm.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihopellsm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | dihopellsm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dihopellsm.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihopellsm.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dihopellsm.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | 3, 4, 5, 6, 7 | dihlss 41207 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
9 | 1, 2, 8 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
10 | dihopellsm.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 3, 4, 5, 6, 7 | dihlss 41207 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
12 | 1, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
13 | eqid 2740 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
14 | dihopellsm.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
15 | 4, 6, 13, 7, 14 | dvhopellsm 41074 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
16 | 1, 9, 12, 15 | syl3anc 1371 | . 2 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
17 | dihopellsm.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | dihopellsm.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
19 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 𝑋 ∈ 𝐵) |
21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) | |
22 | 3, 4, 17, 18, 5, 19, 20, 21 | dihopcl 41210 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) |
23 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 𝑌 ∈ 𝐵) |
25 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) | |
26 | 3, 4, 17, 18, 5, 23, 24, 25 | dihopcl 41210 | . . . . . 6 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) |
27 | 22, 26 | anim12dan 618 | . . . . 5 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) |
28 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) | |
30 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) | |
31 | dihopellsm.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) | |
32 | 4, 17, 18, 31, 6, 13 | dvhopvadd2 41051 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
33 | 28, 29, 30, 32 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
34 | 33 | eqeq2d 2751 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉)) |
35 | vex 3492 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
36 | vex 3492 | . . . . . . . 8 ⊢ ℎ ∈ V | |
37 | 35, 36 | coex 7970 | . . . . . . 7 ⊢ (𝑔 ∘ ℎ) ∈ V |
38 | ovex 7481 | . . . . . . 7 ⊢ (𝑡𝐴𝑢) ∈ V | |
39 | 37, 38 | opth2 5500 | . . . . . 6 ⊢ (〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉 ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))) |
40 | 34, 39 | bitrdi 287 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
41 | 27, 40 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
42 | 41 | pm5.32da 578 | . . 3 ⊢ (𝜑 → (((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
43 | 42 | 4exbidv 1925 | . 2 ⊢ (𝜑 → (∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
44 | 16, 43 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 ↦ cmpt 5249 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 +gcplusg 17311 LSSumclsm 19676 LSubSpclss 20952 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 DVecHcdvh 41035 DIsoHcdih 41185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 df-edring 40714 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 |
This theorem is referenced by: dihjatcclem4 41378 |
Copyright terms: Public domain | W3C validator |