Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopellsm Structured version   Visualization version   GIF version

Theorem dihopellsm 41256
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.)
Hypotheses
Ref Expression
dihopellsm.b 𝐵 = (Base‘𝐾)
dihopellsm.h 𝐻 = (LHyp‘𝐾)
dihopellsm.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopellsm.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopellsm.a 𝐴 = (𝑣𝐸, 𝑤𝐸 ↦ (𝑖𝑇 ↦ ((𝑣𝑖) ∘ (𝑤𝑖))))
dihopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopellsm.l 𝐿 = (LSubSp‘𝑈)
dihopellsm.p = (LSSum‘𝑈)
dihopellsm.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopellsm.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihopellsm.x (𝜑𝑋𝐵)
dihopellsm.y (𝜑𝑌𝐵)
Assertion
Ref Expression
dihopellsm (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
Distinct variable groups:   𝑤,𝑣,𝐸   𝑔,,𝑡,𝑢,𝐹   𝑔,𝑖,𝐻,𝑡   𝑔,𝐼,,𝑡,𝑢   𝑣,𝑔,𝑤,𝐾,𝑖,𝑡   𝑆,𝑔,,𝑡,𝑢   𝑈,𝑔,,𝑡,𝑢   𝑔,𝑊,𝑖,𝑡,𝑣,𝑤   𝑔,𝑋,,𝑡,𝑢   𝑔,𝑌,,𝑡,𝑢   𝜑,𝑔,,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑖)   𝐴(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝐵(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   (𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑆(𝑤,𝑣,𝑖)   𝑇(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑈(𝑤,𝑣,𝑖)   𝐸(𝑢,𝑡,𝑔,,𝑖)   𝐹(𝑤,𝑣,𝑖)   𝐻(𝑤,𝑣,𝑢,)   𝐼(𝑤,𝑣,𝑖)   𝐾(𝑢,)   𝐿(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑊(𝑢,)   𝑋(𝑤,𝑣,𝑖)   𝑌(𝑤,𝑣,𝑖)

Proof of Theorem dihopellsm
StepHypRef Expression
1 dihopellsm.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihopellsm.x . . . 4 (𝜑𝑋𝐵)
3 dihopellsm.b . . . . 5 𝐵 = (Base‘𝐾)
4 dihopellsm.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dihopellsm.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
6 dihopellsm.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2730 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
83, 4, 5, 6, 7dihlss 41251 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
91, 2, 8syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
10 dihopellsm.y . . . 4 (𝜑𝑌𝐵)
113, 4, 5, 6, 7dihlss 41251 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
121, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
13 eqid 2730 . . . 4 (+g𝑈) = (+g𝑈)
14 dihopellsm.p . . . 4 = (LSSum‘𝑈)
154, 6, 13, 7, 14dvhopellsm 41118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩))))
161, 9, 12, 15syl3anc 1373 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩))))
17 dihopellsm.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 dihopellsm.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
191adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
202adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → 𝑋𝐵)
21 simpr 484 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋))
223, 4, 17, 18, 5, 19, 20, 21dihopcl 41254 . . . . . 6 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → (𝑔𝑇𝑡𝐸))
231adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2410adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → 𝑌𝐵)
25 simpr 484 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → ⟨, 𝑢⟩ ∈ (𝐼𝑌))
263, 4, 17, 18, 5, 23, 24, 25dihopcl 41254 . . . . . 6 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → (𝑇𝑢𝐸))
2722, 26anim12dan 619 . . . . 5 ((𝜑 ∧ (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌))) → ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸)))
281adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simprl 770 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝑔𝑇𝑡𝐸))
30 simprr 772 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝑇𝑢𝐸))
31 dihopellsm.a . . . . . . . . 9 𝐴 = (𝑣𝐸, 𝑤𝐸 ↦ (𝑖𝑇 ↦ ((𝑣𝑖) ∘ (𝑤𝑖))))
324, 17, 18, 31, 6, 13dvhopvadd2 41095 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸)) → (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) = ⟨(𝑔), (𝑡𝐴𝑢)⟩)
3328, 29, 30, 32syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) = ⟨(𝑔), (𝑡𝐴𝑢)⟩)
3433eqeq2d 2741 . . . . . 6 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑔), (𝑡𝐴𝑢)⟩))
35 vex 3454 . . . . . . . 8 𝑔 ∈ V
36 vex 3454 . . . . . . . 8 ∈ V
3735, 36coex 7909 . . . . . . 7 (𝑔) ∈ V
38 ovex 7423 . . . . . . 7 (𝑡𝐴𝑢) ∈ V
3937, 38opth2 5443 . . . . . 6 (⟨𝐹, 𝑆⟩ = ⟨(𝑔), (𝑡𝐴𝑢)⟩ ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))
4034, 39bitrdi 287 . . . . 5 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢))))
4127, 40syldan 591 . . . 4 ((𝜑 ∧ (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢))))
4241pm5.32da 579 . . 3 (𝜑 → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩)) ↔ ((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
43424exbidv 1926 . 2 (𝜑 → (∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
4416, 43bitrd 279 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4598  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  +gcplusg 17227  LSSumclsm 19571  LSubSpclss 20844  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  DVecHcdvh 41079  DIsoHcdih 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230
This theorem is referenced by:  dihjatcclem4  41422
  Copyright terms: Public domain W3C validator