Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopellsm | Structured version Visualization version GIF version |
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) |
Ref | Expression |
---|---|
dihopellsm.b | ⊢ 𝐵 = (Base‘𝐾) |
dihopellsm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihopellsm.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihopellsm.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihopellsm.a | ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) |
dihopellsm.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihopellsm.l | ⊢ 𝐿 = (LSubSp‘𝑈) |
dihopellsm.p | ⊢ ⊕ = (LSSum‘𝑈) |
dihopellsm.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihopellsm.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihopellsm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dihopellsm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
dihopellsm | ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihopellsm.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihopellsm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | dihopellsm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dihopellsm.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihopellsm.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dihopellsm.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2759 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
8 | 3, 4, 5, 6, 7 | dihlss 38816 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
9 | 1, 2, 8 | syl2anc 588 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
10 | dihopellsm.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
11 | 3, 4, 5, 6, 7 | dihlss 38816 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
12 | 1, 10, 11 | syl2anc 588 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
13 | eqid 2759 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
14 | dihopellsm.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
15 | 4, 6, 13, 7, 14 | dvhopellsm 38683 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
16 | 1, 9, 12, 15 | syl3anc 1369 | . 2 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
17 | dihopellsm.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | dihopellsm.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
19 | 1 | adantr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | 2 | adantr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 𝑋 ∈ 𝐵) |
21 | simpr 489 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) | |
22 | 3, 4, 17, 18, 5, 19, 20, 21 | dihopcl 38819 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) |
23 | 1 | adantr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 10 | adantr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 𝑌 ∈ 𝐵) |
25 | simpr 489 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) | |
26 | 3, 4, 17, 18, 5, 23, 24, 25 | dihopcl 38819 | . . . . . 6 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) |
27 | 22, 26 | anim12dan 622 | . . . . 5 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) |
28 | 1 | adantr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
29 | simprl 771 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) | |
30 | simprr 773 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) | |
31 | dihopellsm.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) | |
32 | 4, 17, 18, 31, 6, 13 | dvhopvadd2 38660 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
33 | 28, 29, 30, 32 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
34 | 33 | eqeq2d 2770 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉)) |
35 | vex 3414 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
36 | vex 3414 | . . . . . . . 8 ⊢ ℎ ∈ V | |
37 | 35, 36 | coex 7638 | . . . . . . 7 ⊢ (𝑔 ∘ ℎ) ∈ V |
38 | ovex 7181 | . . . . . . 7 ⊢ (𝑡𝐴𝑢) ∈ V | |
39 | 37, 38 | opth2 5338 | . . . . . 6 ⊢ (〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉 ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))) |
40 | 34, 39 | syl6bb 291 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
41 | 27, 40 | syldan 595 | . . . 4 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
42 | 41 | pm5.32da 583 | . . 3 ⊢ (𝜑 → (((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
43 | 42 | 4exbidv 1928 | . 2 ⊢ (𝜑 → (∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
44 | 16, 43 | bitrd 282 | 1 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∃wex 1782 ∈ wcel 2112 〈cop 4526 ↦ cmpt 5110 ∘ ccom 5526 ‘cfv 6333 (class class class)co 7148 ∈ cmpo 7150 Basecbs 16531 +gcplusg 16613 LSSumclsm 18816 LSubSpclss 19761 HLchlt 36916 LHypclh 37550 LTrncltrn 37667 TEndoctendo 38318 DVecHcdvh 38644 DIsoHcdih 38794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-riotaBAD 36519 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-tpos 7900 df-undef 7947 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-map 8416 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-n0 11925 df-z 12011 df-uz 12273 df-fz 12930 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-ress 16539 df-plusg 16626 df-mulr 16627 df-sca 16629 df-vsca 16630 df-0g 16763 df-proset 17594 df-poset 17612 df-plt 17624 df-lub 17640 df-glb 17641 df-join 17642 df-meet 17643 df-p0 17705 df-p1 17706 df-lat 17712 df-clat 17774 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-submnd 18013 df-grp 18162 df-minusg 18163 df-sbg 18164 df-subg 18333 df-cntz 18504 df-lsm 18818 df-cmn 18965 df-abl 18966 df-mgp 19298 df-ur 19310 df-ring 19357 df-oppr 19434 df-dvdsr 19452 df-unit 19453 df-invr 19483 df-dvr 19494 df-drng 19562 df-lmod 19694 df-lss 19762 df-lsp 19802 df-lvec 19933 df-oposet 36742 df-ol 36744 df-oml 36745 df-covers 36832 df-ats 36833 df-atl 36864 df-cvlat 36888 df-hlat 36917 df-llines 37064 df-lplanes 37065 df-lvols 37066 df-lines 37067 df-psubsp 37069 df-pmap 37070 df-padd 37362 df-lhyp 37554 df-laut 37555 df-ldil 37670 df-ltrn 37671 df-trl 37725 df-tendo 38321 df-edring 38323 df-disoa 38595 df-dvech 38645 df-dib 38705 df-dic 38739 df-dih 38795 |
This theorem is referenced by: dihjatcclem4 38987 |
Copyright terms: Public domain | W3C validator |