| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopellsm | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) |
| Ref | Expression |
|---|---|
| dihopellsm.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihopellsm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihopellsm.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihopellsm.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dihopellsm.a | ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) |
| dihopellsm.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihopellsm.l | ⊢ 𝐿 = (LSubSp‘𝑈) |
| dihopellsm.p | ⊢ ⊕ = (LSSum‘𝑈) |
| dihopellsm.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihopellsm.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dihopellsm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dihopellsm.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dihopellsm | ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihopellsm.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dihopellsm.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | dihopellsm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | dihopellsm.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dihopellsm.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 6 | dihopellsm.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 8 | 3, 4, 5, 6, 7 | dihlss 41227 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
| 9 | 1, 2, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
| 10 | dihopellsm.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 11 | 3, 4, 5, 6, 7 | dihlss 41227 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
| 12 | 1, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
| 13 | eqid 2734 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 14 | dihopellsm.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
| 15 | 4, 6, 13, 7, 14 | dvhopellsm 41094 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
| 16 | 1, 9, 12, 15 | syl3anc 1372 | . 2 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)))) |
| 17 | dihopellsm.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | dihopellsm.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 19 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 20 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 𝑋 ∈ 𝐵) |
| 21 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) | |
| 22 | 3, 4, 17, 18, 5, 19, 20, 21 | dihopcl 41230 | . . . . . 6 ⊢ ((𝜑 ∧ 〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋)) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) |
| 23 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 24 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 𝑌 ∈ 𝐵) |
| 25 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) | |
| 26 | 3, 4, 17, 18, 5, 23, 24, 25 | dihopcl 41230 | . . . . . 6 ⊢ ((𝜑 ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) |
| 27 | 22, 26 | anim12dan 619 | . . . . 5 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) |
| 28 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 29 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸)) | |
| 30 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) | |
| 31 | dihopellsm.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑣 ∈ 𝐸, 𝑤 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((𝑣‘𝑖) ∘ (𝑤‘𝑖)))) | |
| 32 | 4, 17, 18, 31, 6, 13 | dvhopvadd2 41071 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸)) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
| 33 | 28, 29, 30, 32 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉) |
| 34 | 33 | eqeq2d 2745 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉)) |
| 35 | vex 3467 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
| 36 | vex 3467 | . . . . . . . 8 ⊢ ℎ ∈ V | |
| 37 | 35, 36 | coex 7934 | . . . . . . 7 ⊢ (𝑔 ∘ ℎ) ∈ V |
| 38 | ovex 7446 | . . . . . . 7 ⊢ (𝑡𝐴𝑢) ∈ V | |
| 39 | 37, 38 | opth2 5465 | . . . . . 6 ⊢ (〈𝐹, 𝑆〉 = 〈(𝑔 ∘ ℎ), (𝑡𝐴𝑢)〉 ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))) |
| 40 | 34, 39 | bitrdi 287 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑔 ∈ 𝑇 ∧ 𝑡 ∈ 𝐸) ∧ (ℎ ∈ 𝑇 ∧ 𝑢 ∈ 𝐸))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
| 41 | 27, 40 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ (〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉) ↔ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢)))) |
| 42 | 41 | pm5.32da 579 | . . 3 ⊢ (𝜑 → (((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
| 43 | 42 | 4exbidv 1925 | . 2 ⊢ (𝜑 → (∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑔, 𝑡〉(+g‘𝑈)〈ℎ, 𝑢〉)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
| 44 | 16, 43 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ⊕ (𝐼‘𝑌)) ↔ ∃𝑔∃𝑡∃ℎ∃𝑢((〈𝑔, 𝑡〉 ∈ (𝐼‘𝑋) ∧ 〈ℎ, 𝑢〉 ∈ (𝐼‘𝑌)) ∧ (𝐹 = (𝑔 ∘ ℎ) ∧ 𝑆 = (𝑡𝐴𝑢))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 〈cop 4612 ↦ cmpt 5205 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17230 +gcplusg 17274 LSSumclsm 19621 LSubSpclss 20898 HLchlt 39326 LHypclh 39961 LTrncltrn 40078 TEndoctendo 40729 DVecHcdvh 41055 DIsoHcdih 41205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-0g 17458 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tendo 40732 df-edring 40734 df-disoa 41006 df-dvech 41056 df-dib 41116 df-dic 41150 df-dih 41206 |
| This theorem is referenced by: dihjatcclem4 41398 |
| Copyright terms: Public domain | W3C validator |