Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopellsm Structured version   Visualization version   GIF version

Theorem dihopellsm 41238
Description: Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.)
Hypotheses
Ref Expression
dihopellsm.b 𝐵 = (Base‘𝐾)
dihopellsm.h 𝐻 = (LHyp‘𝐾)
dihopellsm.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihopellsm.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihopellsm.a 𝐴 = (𝑣𝐸, 𝑤𝐸 ↦ (𝑖𝑇 ↦ ((𝑣𝑖) ∘ (𝑤𝑖))))
dihopellsm.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihopellsm.l 𝐿 = (LSubSp‘𝑈)
dihopellsm.p = (LSSum‘𝑈)
dihopellsm.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihopellsm.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihopellsm.x (𝜑𝑋𝐵)
dihopellsm.y (𝜑𝑌𝐵)
Assertion
Ref Expression
dihopellsm (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
Distinct variable groups:   𝑤,𝑣,𝐸   𝑔,,𝑡,𝑢,𝐹   𝑔,𝑖,𝐻,𝑡   𝑔,𝐼,,𝑡,𝑢   𝑣,𝑔,𝑤,𝐾,𝑖,𝑡   𝑆,𝑔,,𝑡,𝑢   𝑈,𝑔,,𝑡,𝑢   𝑔,𝑊,𝑖,𝑡,𝑣,𝑤   𝑔,𝑋,,𝑡,𝑢   𝑔,𝑌,,𝑡,𝑢   𝜑,𝑔,,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑖)   𝐴(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝐵(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   (𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑆(𝑤,𝑣,𝑖)   𝑇(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑈(𝑤,𝑣,𝑖)   𝐸(𝑢,𝑡,𝑔,,𝑖)   𝐹(𝑤,𝑣,𝑖)   𝐻(𝑤,𝑣,𝑢,)   𝐼(𝑤,𝑣,𝑖)   𝐾(𝑢,)   𝐿(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖)   𝑊(𝑢,)   𝑋(𝑤,𝑣,𝑖)   𝑌(𝑤,𝑣,𝑖)

Proof of Theorem dihopellsm
StepHypRef Expression
1 dihopellsm.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihopellsm.x . . . 4 (𝜑𝑋𝐵)
3 dihopellsm.b . . . . 5 𝐵 = (Base‘𝐾)
4 dihopellsm.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dihopellsm.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
6 dihopellsm.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2735 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
83, 4, 5, 6, 7dihlss 41233 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
91, 2, 8syl2anc 584 . . 3 (𝜑 → (𝐼𝑋) ∈ (LSubSp‘𝑈))
10 dihopellsm.y . . . 4 (𝜑𝑌𝐵)
113, 4, 5, 6, 7dihlss 41233 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵) → (𝐼𝑌) ∈ (LSubSp‘𝑈))
121, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐼𝑌) ∈ (LSubSp‘𝑈))
13 eqid 2735 . . . 4 (+g𝑈) = (+g𝑈)
14 dihopellsm.p . . . 4 = (LSSum‘𝑈)
154, 6, 13, 7, 14dvhopellsm 41100 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑌) ∈ (LSubSp‘𝑈)) → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩))))
161, 9, 12, 15syl3anc 1370 . 2 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩))))
17 dihopellsm.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 dihopellsm.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
191adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
202adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → 𝑋𝐵)
21 simpr 484 . . . . . . 7 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋))
223, 4, 17, 18, 5, 19, 20, 21dihopcl 41236 . . . . . 6 ((𝜑 ∧ ⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋)) → (𝑔𝑇𝑡𝐸))
231adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2410adantr 480 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → 𝑌𝐵)
25 simpr 484 . . . . . . 7 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → ⟨, 𝑢⟩ ∈ (𝐼𝑌))
263, 4, 17, 18, 5, 23, 24, 25dihopcl 41236 . . . . . 6 ((𝜑 ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) → (𝑇𝑢𝐸))
2722, 26anim12dan 619 . . . . 5 ((𝜑 ∧ (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌))) → ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸)))
281adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simprl 771 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝑔𝑇𝑡𝐸))
30 simprr 773 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (𝑇𝑢𝐸))
31 dihopellsm.a . . . . . . . . 9 𝐴 = (𝑣𝐸, 𝑤𝐸 ↦ (𝑖𝑇 ↦ ((𝑣𝑖) ∘ (𝑤𝑖))))
324, 17, 18, 31, 6, 13dvhopvadd2 41077 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸)) → (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) = ⟨(𝑔), (𝑡𝐴𝑢)⟩)
3328, 29, 30, 32syl3anc 1370 . . . . . . 7 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) = ⟨(𝑔), (𝑡𝐴𝑢)⟩)
3433eqeq2d 2746 . . . . . 6 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ ⟨𝐹, 𝑆⟩ = ⟨(𝑔), (𝑡𝐴𝑢)⟩))
35 vex 3482 . . . . . . . 8 𝑔 ∈ V
36 vex 3482 . . . . . . . 8 ∈ V
3735, 36coex 7953 . . . . . . 7 (𝑔) ∈ V
38 ovex 7464 . . . . . . 7 (𝑡𝐴𝑢) ∈ V
3937, 38opth2 5491 . . . . . 6 (⟨𝐹, 𝑆⟩ = ⟨(𝑔), (𝑡𝐴𝑢)⟩ ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))
4034, 39bitrdi 287 . . . . 5 ((𝜑 ∧ ((𝑔𝑇𝑡𝐸) ∧ (𝑇𝑢𝐸))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢))))
4127, 40syldan 591 . . . 4 ((𝜑 ∧ (⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌))) → (⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩) ↔ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢))))
4241pm5.32da 579 . . 3 (𝜑 → (((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩)) ↔ ((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
43424exbidv 1924 . 2 (𝜑 → (∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ ⟨𝐹, 𝑆⟩ = (⟨𝑔, 𝑡⟩(+g𝑈)⟨, 𝑢⟩)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
4416, 43bitrd 279 1 (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  cop 4637  cmpt 5231  ccom 5693  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  +gcplusg 17298  LSSumclsm 19667  LSubSpclss 20947  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  TEndoctendo 40735  DVecHcdvh 41061  DIsoHcdih 41211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212
This theorem is referenced by:  dihjatcclem4  41404
  Copyright terms: Public domain W3C validator