Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abbi1sn Structured version   Visualization version   GIF version

Theorem abbi1sn 41346
Description: Originally part of uniabio 6510. Convert a theorem about df-iota 6495 to one about dfiota2 6496, without ax-10 2137, ax-11 2154, ax-12 2171. Although, eu6 2568 uses ax-10 2137 and ax-12 2171. (Contributed by SN, 23-Nov-2024.)
Assertion
Ref Expression
abbi1sn (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abbi1sn
StepHypRef Expression
1 abbi 2800 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4629 . 2 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2790 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  {cab 2709  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-sn 4629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator