Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abbi1sn | Structured version Visualization version GIF version |
Description: Originally part of uniabio 6447. Convert a theorem about df-iota 6432 to one about dfiota2 6433, without ax-10 2136, ax-11 2153, ax-12 2170. Although, eu6 2572 uses ax-10 2136 and ax-12 2170. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
abbi1sn | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 2804 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | df-sn 4575 | . 2 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | eqtr4di 2794 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 {cab 2713 {csn 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-sn 4575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |