Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abbi1sn Structured version   Visualization version   GIF version

Theorem abbi1sn 40500
Description: Originally part of uniabio 6447. Convert a theorem about df-iota 6432 to one about dfiota2 6433, without ax-10 2136, ax-11 2153, ax-12 2170. Although, eu6 2572 uses ax-10 2136 and ax-12 2170. (Contributed by SN, 23-Nov-2024.)
Assertion
Ref Expression
abbi1sn (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abbi1sn
StepHypRef Expression
1 abbi1 2804 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4575 . 2 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2794 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  {cab 2713  {csn 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-sn 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator