Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abbi1sn Structured version   Visualization version   GIF version

Theorem abbi1sn 40180
Description: Originally part of uniabio 6404. Convert a theorem about df-iota 6389 to one about dfiota2 6390, without ax-10 2141, ax-11 2158, ax-12 2175. Although, eu6 2576 uses ax-10 2141 and ax-12 2175. (Contributed by SN, 23-Nov-2024.)
Assertion
Ref Expression
abbi1sn (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abbi1sn
StepHypRef Expression
1 abbi1 2808 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4568 . 2 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2798 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  {cab 2717  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-sn 4568
This theorem is referenced by:  sn-iotaval  40184
  Copyright terms: Public domain W3C validator