| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiota2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfiota2 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 6437 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 2 | absn 4593 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 3 | 2 | abbii 2798 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 4 | 3 | unieqi 4868 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 = wceq 1541 {cab 2709 {csn 4573 ∪ cuni 4856 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-sn 4574 df-uni 4857 df-iota 6437 |
| This theorem is referenced by: nfiota1 6439 nfiotadw 6440 nfiotad 6442 cbviotaw 6444 cbviota 6446 sb8iota 6448 iotanul 6461 fv2 6817 |
| Copyright terms: Public domain | W3C validator |