MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota2 Structured version   Visualization version   GIF version

Theorem dfiota2 6490
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 6489 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 absn 4626 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
32abbii 2803 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
43unieqi 4900 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
51, 4eqtri 2759 1 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  {cab 2714  {csn 4606   cuni 4888  cio 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-sn 4607  df-uni 4889  df-iota 6489
This theorem is referenced by:  nfiota1  6491  nfiotadw  6492  nfiotad  6494  cbviotaw  6496  cbviota  6498  sb8iota  6500  iotavalOLD  6510  iotanul  6514  fv2  6876
  Copyright terms: Public domain W3C validator