![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiota2 | Structured version Visualization version GIF version |
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
dfiota2 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota 6495 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
2 | absn 4643 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | 2 | abbii 2798 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 3 | unieqi 4916 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
5 | 1, 4 | eqtri 2756 | 1 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 = wceq 1534 {cab 2705 {csn 4625 ∪ cuni 4904 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 df-sn 4626 df-uni 4905 df-iota 6495 |
This theorem is referenced by: nfiota1 6497 nfiotadw 6498 nfiotad 6500 cbviotaw 6502 cbviota 6505 sb8iota 6507 iotavalOLD 6517 iotanul 6521 fv2 6887 |
Copyright terms: Public domain | W3C validator |