![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-iotalemcor | Structured version Visualization version GIF version |
Description: Corollary of sn-iotalem 41531. Compare sb8iota 6497. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
sn-iotalemcor | ⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-iotalem 41531 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | |
2 | 1 | unieqi 4911 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} |
3 | df-iota 6485 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | df-iota 6485 | . 2 ⊢ (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) = ∪ {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | |
5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cab 2701 {csn 4620 ∪ cuni 4899 ℩cio 6483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 df-sn 4621 df-uni 4900 df-iota 6485 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |