Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotalemcor Structured version   Visualization version   GIF version

Theorem sn-iotalemcor 41841
Description: Corollary of sn-iotalem 41840. Compare sb8iota 6513. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotalemcor (℩𝑥𝜑) = (℩𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotalemcor
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sn-iotalem 41840 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
21unieqi 4921 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
3 df-iota 6501 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
4 df-iota 6501 . 2 (℩𝑦{𝑥𝜑} = {𝑦}) = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
52, 3, 43eqtr4i 2763 1 (℩𝑥𝜑) = (℩𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cab 2702  {csn 4630   cuni 4909  cio 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-ss 3961  df-sn 4631  df-uni 4910  df-iota 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator