Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-iotalemcor | Structured version Visualization version GIF version |
Description: Corollary of sn-iotalem 40089. Compare sb8iota 6385. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
sn-iotalemcor | ⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-iotalem 40089 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | |
2 | 1 | unieqi 4849 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} |
3 | df-iota 6373 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | df-iota 6373 | . 2 ⊢ (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) = ∪ {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | |
5 | 2, 3, 4 | 3eqtr4i 2777 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 {cab 2716 {csn 4558 ∪ cuni 4836 ℩cio 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-in 3891 df-ss 3901 df-sn 4559 df-uni 4837 df-iota 6373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |