Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif1 Structured version   Visualization version   GIF version

Theorem brif1 40124
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif1 (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶))

Proof of Theorem brif1
StepHypRef Expression
1 iftrue 4462 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21breq1d 5080 . 2 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶𝐴𝑅𝐶))
3 iffalse 4465 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43breq1d 5080 . 2 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶𝐵𝑅𝐶))
52, 4casesifp 1075 1 (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1059  ifcif 4456   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator