Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brif1 | Structured version Visualization version GIF version |
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
brif1 | ⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4478 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | breq1d 5099 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ 𝐴𝑅𝐶)) |
3 | iffalse 4481 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
4 | 3 | breq1d 5099 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
5 | 2, 4 | casesifp 1076 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1060 ifcif 4472 class class class wbr 5089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |