| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brif1 | Structured version Visualization version GIF version | ||
| Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
| Ref | Expression |
|---|---|
| brif1 | ⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4478 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | breq1d 5099 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ 𝐴𝑅𝐶)) |
| 3 | iffalse 4481 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 4 | 3 | breq1d 5099 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 5 | 2, 4 | casesifp 1077 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1062 ifcif 4472 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: psdmul 22081 psdmvr 22084 |
| Copyright terms: Public domain | W3C validator |