MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniabio Structured version   Visualization version   GIF version

Theorem uniabio 6451
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2796 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4577 . . . 4 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2784 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
43unieqd 4872 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
5 unisnv 4879 . 2 {𝑦} = 𝑦
64, 5eqtrdi 2782 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  {cab 2709  {csn 4576   cuni 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919  df-sn 4577  df-pr 4579  df-uni 4860
This theorem is referenced by:  iotaval2  6452  iotauni  6458
  Copyright terms: Public domain W3C validator