![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniabio | Structured version Visualization version GIF version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2798 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | df-sn 4628 | . . . 4 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | eqtr4di 2788 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
4 | 3 | unieqd 4921 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) |
5 | unisnv 4930 | . 2 ⊢ ∪ {𝑦} = 𝑦 | |
6 | 4, 5 | eqtrdi 2786 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 {cab 2707 {csn 4627 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 df-in 3954 df-ss 3964 df-sn 4628 df-pr 4630 df-uni 4908 |
This theorem is referenced by: iotaval2 6510 iotavalOLD 6516 iotauni 6517 |
Copyright terms: Public domain | W3C validator |