MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniabio Structured version   Visualization version   GIF version

Theorem uniabio 6391
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi1 2807 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
2 df-sn 4559 . . . 4 {𝑦} = {𝑥𝑥 = 𝑦}
31, 2eqtr4di 2797 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
43unieqd 4850 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
5 vex 3426 . . 3 𝑦 ∈ V
65unisn 4858 . 2 {𝑦} = 𝑦
74, 6eqtrdi 2795 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  {cab 2715  {csn 4558   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  iotaval  6392  iotauni  6393  sn-iotaval  40119
  Copyright terms: Public domain W3C validator