Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniabio | Structured version Visualization version GIF version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 2806 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
2 | df-sn 4562 | . . . 4 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
4 | 3 | unieqd 4853 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) |
5 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
6 | 5 | unisn 4861 | . 2 ⊢ ∪ {𝑦} = 𝑦 |
7 | 4, 6 | eqtrdi 2794 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 {cab 2715 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: iotaval 6407 iotauni 6408 iotavallem 40192 |
Copyright terms: Public domain | W3C validator |