| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniabio | Structured version Visualization version GIF version | ||
| Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| uniabio | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2795 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
| 2 | df-sn 4598 | . . . 4 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
| 4 | 3 | unieqd 4892 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) |
| 5 | unisnv 4899 | . 2 ⊢ ∪ {𝑦} = 𝑦 | |
| 6 | 4, 5 | eqtrdi 2781 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 {cab 2708 {csn 4597 ∪ cuni 4879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-un 3927 df-ss 3939 df-sn 4598 df-pr 4600 df-uni 4880 |
| This theorem is referenced by: iotaval2 6487 iotavalOLD 6493 iotauni 6494 |
| Copyright terms: Public domain | W3C validator |