Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqel Structured version   Visualization version   GIF version

Theorem rabeqel 37425
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.)
Hypotheses
Ref Expression
rabeqel.1 𝐵 = {𝑥𝐴𝜑}
rabeqel.2 (𝑥 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rabeqel (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem rabeqel
StepHypRef Expression
1 rabeqel.2 . . 3 (𝑥 = 𝐶 → (𝜑𝜓))
2 rabeqel.1 . . 3 𝐵 = {𝑥𝐴𝜑}
31, 2elrab2 3686 . 2 (𝐶𝐵 ↔ (𝐶𝐴𝜓))
43biancomi 463 1 (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476
This theorem is referenced by:  elrefrels2  37691  elrefrels3  37692  elcnvrefrels2  37707  elcnvrefrels3  37708  elsymrels2  37726  elsymrels3  37727  elsymrels4  37728  elsymrels5  37729  elrefsymrels2  37742  eltrrels2  37752  eltrrels3  37753  eleqvrels2  37765  eleqvrels3  37766  elfunsALTV  37865  eldisjs  37895
  Copyright terms: Public domain W3C validator