Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqel | Structured version Visualization version GIF version |
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
rabeqel.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabeqel.2 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabeqel | ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqel.2 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) | |
2 | rabeqel.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
3 | 1, 2 | elrab2 3620 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝜓)) |
4 | 3 | biancomi 462 | 1 ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 |
This theorem is referenced by: elrefrels2 36562 elrefrels3 36563 elcnvrefrels2 36575 elcnvrefrels3 36576 elsymrels2 36594 elsymrels3 36595 elsymrels4 36596 elsymrels5 36597 elrefsymrels2 36610 eltrrels2 36620 eltrrels3 36621 eleqvrels2 36632 eleqvrels3 36633 elfunsALTV 36730 eldisjs 36760 |
Copyright terms: Public domain | W3C validator |