| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqel | Structured version Visualization version GIF version | ||
| Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabeqel.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| rabeqel.2 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabeqel | ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqel.2 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) | |
| 2 | rabeqel.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 3 | 1, 2 | elrab2 3679 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝜓)) |
| 4 | 3 | biancomi 462 | 1 ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 |
| This theorem is referenced by: elrefrels2 38541 elrefrels3 38542 elcnvrefrels2 38557 elcnvrefrels3 38558 elsymrels2 38576 elsymrels3 38577 elsymrels4 38578 elsymrels5 38579 elrefsymrels2 38592 eltrrels2 38602 eltrrels3 38603 eleqvrels2 38615 eleqvrels3 38616 elfunsALTV 38715 eldisjs 38745 |
| Copyright terms: Public domain | W3C validator |