![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqel | Structured version Visualization version GIF version |
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
rabeqel.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabeqel.2 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabeqel | ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqel.2 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) | |
2 | rabeqel.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
3 | 1, 2 | elrab2 3711 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝜓)) |
4 | 3 | biancomi 462 | 1 ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 |
This theorem is referenced by: elrefrels2 38474 elrefrels3 38475 elcnvrefrels2 38490 elcnvrefrels3 38491 elsymrels2 38509 elsymrels3 38510 elsymrels4 38511 elsymrels5 38512 elrefsymrels2 38525 eltrrels2 38535 eltrrels3 38536 eleqvrels2 38548 eleqvrels3 38549 elfunsALTV 38648 eldisjs 38678 |
Copyright terms: Public domain | W3C validator |