![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqel | Structured version Visualization version GIF version |
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
rabeqel.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabeqel.2 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabeqel | ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqel.2 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) | |
2 | rabeqel.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
3 | 1, 2 | elrab2 3561 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝜓)) |
4 | 3 | biancomi 455 | 1 ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rab 3099 df-v 3388 |
This theorem is referenced by: elrefrels2 34760 elrefrels3 34761 elcnvrefrels2 34773 elcnvrefrels3 34774 elsymrels2 34792 elsymrels3 34793 elsymrels4 34794 elsymrels5 34795 elrefsymrels2 34808 eltrrels2 34818 eltrrels3 34819 eleqvrels2 34829 eleqvrels3 34830 |
Copyright terms: Public domain | W3C validator |