Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqel Structured version   Visualization version   GIF version

Theorem rabeqel 38239
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.)
Hypotheses
Ref Expression
rabeqel.1 𝐵 = {𝑥𝐴𝜑}
rabeqel.2 (𝑥 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rabeqel (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem rabeqel
StepHypRef Expression
1 rabeqel.2 . . 3 (𝑥 = 𝐶 → (𝜑𝜓))
2 rabeqel.1 . . 3 𝐵 = {𝑥𝐴𝜑}
31, 2elrab2 3651 . 2 (𝐶𝐵 ↔ (𝐶𝐴𝜓))
43biancomi 462 1 (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438
This theorem is referenced by:  elrefrels2  38505  elrefrels3  38506  elcnvrefrels2  38521  elcnvrefrels3  38522  elsymrels2  38540  elsymrels3  38541  elsymrels4  38542  elsymrels5  38543  elrefsymrels2  38556  eltrrels2  38566  eltrrels3  38567  eleqvrels2  38579  eleqvrels3  38580  elfunsALTV  38680  eldisjs  38710
  Copyright terms: Public domain W3C validator