Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqel Structured version   Visualization version   GIF version

Theorem rabeqel 37585
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.)
Hypotheses
Ref Expression
rabeqel.1 𝐵 = {𝑥𝐴𝜑}
rabeqel.2 (𝑥 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rabeqel (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem rabeqel
StepHypRef Expression
1 rabeqel.2 . . 3 (𝑥 = 𝐶 → (𝜑𝜓))
2 rabeqel.1 . . 3 𝐵 = {𝑥𝐴𝜑}
31, 2elrab2 3686 . 2 (𝐶𝐵 ↔ (𝐶𝐴𝜓))
43biancomi 462 1 (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {crab 3431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475
This theorem is referenced by:  elrefrels2  37851  elrefrels3  37852  elcnvrefrels2  37867  elcnvrefrels3  37868  elsymrels2  37886  elsymrels3  37887  elsymrels4  37888  elsymrels5  37889  elrefsymrels2  37902  eltrrels2  37912  eltrrels3  37913  eleqvrels2  37925  eleqvrels3  37926  elfunsALTV  38025  eldisjs  38055
  Copyright terms: Public domain W3C validator