![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssdvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of abssdv 4065 as of 12-Dec-2024. (Contributed by NM, 20-Jan-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdvOLD | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) |
3 | abss 4057 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 {cab 2709 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |