MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssdvOLD Structured version   Visualization version   GIF version

Theorem abssdvOLD 4034
Description: Obsolete version of abssdv 4033 as of 12-Dec-2024. (Contributed by NM, 20-Jan-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abssdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abssdvOLD (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abssdvOLD
StepHypRef Expression
1 abssdv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1927 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abss 4028 . 2 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 234 1 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  {cab 2708  wss 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ss 3933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator