| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 4047 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2873 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 4012 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2714 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 |
| This theorem is referenced by: ssab2 4059 intab 4959 opabss 5188 relopabiALT 5807 exse2 7918 opiota 8063 mpoexw 8082 fsplitfpar 8122 tfrlem8 8403 fiprc 9064 fival 9429 hartogslem1 9561 dmttrcl 9740 rnttrcl 9741 tz9.12lem1 9806 rankuni 9882 scott0 9905 r0weon 10031 alephval3 10129 aceq3lem 10139 dfac5lem4 10145 dfac5lem4OLD 10147 dfac2b 10150 cff 10267 cfsuc 10276 cff1 10277 cflim2 10282 cfss 10284 axdc3lem 10469 axdclem 10538 gruina 10837 nqpr 11033 infcvgaux1i 15878 4sqlem1 16973 sscpwex 17833 cssval 21647 topnex 22939 islocfin 23460 hauspwpwf1 23930 itg2lcl 25685 2sqlem7 27392 scutf 27781 isismt 28518 nmcexi 32012 opabssi 32598 lsmsnorb 33411 dispcmp 33895 cnre2csqima 33947 mppspstlem 35598 colinearex 36083 itg2addnclem 37700 itg2addnc 37703 eldiophb 42755 |
| Copyright terms: Public domain | W3C validator |