Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 3996 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2881 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3953 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssab2 4008 intab 4906 opabss 5134 relopabiALT 5722 exse2 7738 opiota 7872 mpoexw 7892 fsplitfpar 7930 tfrlem8 8186 fiprc 8789 fival 9101 hartogslem1 9231 tz9.12lem1 9476 rankuni 9552 scott0 9575 r0weon 9699 alephval3 9797 aceq3lem 9807 dfac5lem4 9813 dfac2b 9817 cff 9935 cfsuc 9944 cff1 9945 cflim2 9950 cfss 9952 axdc3lem 10137 axdclem 10206 gruina 10505 nqpr 10701 infcvgaux1i 15497 4sqlem1 16577 sscpwex 17444 cssval 20799 topnex 22054 islocfin 22576 hauspwpwf1 23046 itg2lcl 24797 2sqlem7 26477 isismt 26799 nmcexi 30289 opabssi 30854 lsmsnorb 31481 dispcmp 31711 cnre2csqima 31763 mppspstlem 33433 dmttrcl 33707 rnttrcl 33708 scutf 33933 colinearex 34289 itg2addnclem 35755 itg2addnc 35758 eldiophb 40495 |
Copyright terms: Public domain | W3C validator |