![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 4090 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2882 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 4045 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 |
This theorem is referenced by: ssab2 4102 intab 5002 opabss 5230 relopabiALT 5847 exse2 7957 opiota 8100 mpoexw 8119 fsplitfpar 8159 tfrlem8 8440 fiprc 9111 fival 9481 hartogslem1 9611 dmttrcl 9790 rnttrcl 9791 tz9.12lem1 9856 rankuni 9932 scott0 9955 r0weon 10081 alephval3 10179 aceq3lem 10189 dfac5lem4 10195 dfac5lem4OLD 10197 dfac2b 10200 cff 10317 cfsuc 10326 cff1 10327 cflim2 10332 cfss 10334 axdc3lem 10519 axdclem 10588 gruina 10887 nqpr 11083 infcvgaux1i 15905 4sqlem1 16995 sscpwex 17876 cssval 21723 topnex 23024 islocfin 23546 hauspwpwf1 24016 itg2lcl 25782 2sqlem7 27486 scutf 27875 isismt 28560 nmcexi 32058 opabssi 32635 lsmsnorb 33384 dispcmp 33805 cnre2csqima 33857 mppspstlem 35539 colinearex 36024 itg2addnclem 37631 itg2addnc 37634 eldiophb 42713 |
Copyright terms: Public domain | W3C validator |