| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 4027 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2865 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3992 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 |
| This theorem is referenced by: ssab2 4038 intab 4938 opabss 5166 relopabiALT 5777 exse2 7873 opiota 8017 mpoexw 8036 fsplitfpar 8074 tfrlem8 8329 fiprc 8993 fival 9339 hartogslem1 9471 dmttrcl 9650 rnttrcl 9651 tz9.12lem1 9716 rankuni 9792 scott0 9815 r0weon 9941 alephval3 10039 aceq3lem 10049 dfac5lem4 10055 dfac5lem4OLD 10057 dfac2b 10060 cff 10177 cfsuc 10186 cff1 10187 cflim2 10192 cfss 10194 axdc3lem 10379 axdclem 10448 gruina 10747 nqpr 10943 infcvgaux1i 15799 4sqlem1 16895 sscpwex 17753 cssval 21567 topnex 22859 islocfin 23380 hauspwpwf1 23850 itg2lcl 25604 2sqlem7 27311 scutf 27700 isismt 28437 nmcexi 31928 opabssi 32514 lsmsnorb 33335 dispcmp 33822 cnre2csqima 33874 mppspstlem 35531 colinearex 36021 itg2addnclem 37638 itg2addnc 37641 eldiophb 42718 |
| Copyright terms: Public domain | W3C validator |