| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 4019 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2865 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3984 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 |
| This theorem is referenced by: ssab2 4030 intab 4928 opabss 5156 relopabiALT 5766 exse2 7850 opiota 7994 mpoexw 8013 fsplitfpar 8051 tfrlem8 8306 fiprc 8970 fival 9302 hartogslem1 9434 dmttrcl 9617 rnttrcl 9618 tz9.12lem1 9683 rankuni 9759 scott0 9782 r0weon 9906 alephval3 10004 aceq3lem 10014 dfac5lem4 10020 dfac5lem4OLD 10022 dfac2b 10025 cff 10142 cfsuc 10151 cff1 10152 cflim2 10157 cfss 10159 axdc3lem 10344 axdclem 10413 gruina 10712 nqpr 10908 infcvgaux1i 15764 4sqlem1 16860 sscpwex 17722 cssval 21589 topnex 22881 islocfin 23402 hauspwpwf1 23872 itg2lcl 25626 2sqlem7 27333 scutf 27723 isismt 28479 nmcexi 31970 opabssi 32558 lsmsnorb 33328 dispcmp 33826 cnre2csqima 33878 mppspstlem 35544 colinearex 36034 itg2addnclem 37651 itg2addnc 37654 eldiophb 42730 |
| Copyright terms: Public domain | W3C validator |