![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 3927 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2903 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3887 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 {cab 2752 ⊆ wss 3823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-in 3830 df-ss 3837 |
This theorem is referenced by: ssab2 3939 intab 4773 opabss 4987 relopabiALT 5539 exse2 7431 opiota 7559 mpoexw 7578 tfrlem8 7818 fiprc 8386 fival 8665 hartogslem1 8795 tz9.12lem1 9004 rankuni 9080 scott0 9103 r0weon 9226 alephval3 9324 aceq3lem 9334 dfac5lem4 9340 dfac2b 9344 cff 9462 cfsuc 9471 cff1 9472 cflim2 9477 cfss 9479 axdc3lem 9664 axdclem 9733 gruina 10032 nqpr 10228 infcvgaux1i 15066 4sqlem1 16134 sscpwex 16937 symgval 18262 cssval 20522 topnex 21302 islocfin 21823 hauspwpwf1 22293 itg2lcl 24025 2sqlem7 25696 isismt 26016 nmcexi 29578 opabssi 30122 dispcmp 30767 cnre2csqima 30798 mppspstlem 32338 scutf 32794 colinearex 33042 itg2addnclem 34384 itg2addnc 34387 eldiophb 38749 |
Copyright terms: Public domain | W3C validator |