![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 4077 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2877 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 4032 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2712 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 |
This theorem is referenced by: ssab2 4089 intab 4983 opabss 5212 relopabiALT 5836 exse2 7940 opiota 8083 mpoexw 8102 fsplitfpar 8142 tfrlem8 8423 fiprc 9084 fival 9450 hartogslem1 9580 dmttrcl 9759 rnttrcl 9760 tz9.12lem1 9825 rankuni 9901 scott0 9924 r0weon 10050 alephval3 10148 aceq3lem 10158 dfac5lem4 10164 dfac5lem4OLD 10166 dfac2b 10169 cff 10286 cfsuc 10295 cff1 10296 cflim2 10301 cfss 10303 axdc3lem 10488 axdclem 10557 gruina 10856 nqpr 11052 infcvgaux1i 15890 4sqlem1 16982 sscpwex 17863 cssval 21718 topnex 23019 islocfin 23541 hauspwpwf1 24011 itg2lcl 25777 2sqlem7 27483 scutf 27872 isismt 28557 nmcexi 32055 opabssi 32633 lsmsnorb 33399 dispcmp 33820 cnre2csqima 33872 mppspstlem 35556 colinearex 36042 itg2addnclem 37658 itg2addnc 37661 eldiophb 42745 |
Copyright terms: Public domain | W3C validator |