Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 4000 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2882 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3957 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2715 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssab2 4012 intab 4909 opabss 5138 relopabiALT 5733 exse2 7764 opiota 7899 mpoexw 7919 fsplitfpar 7959 tfrlem8 8215 fiprc 8835 fival 9171 hartogslem1 9301 dmttrcl 9479 rnttrcl 9480 tz9.12lem1 9545 rankuni 9621 scott0 9644 r0weon 9768 alephval3 9866 aceq3lem 9876 dfac5lem4 9882 dfac2b 9886 cff 10004 cfsuc 10013 cff1 10014 cflim2 10019 cfss 10021 axdc3lem 10206 axdclem 10275 gruina 10574 nqpr 10770 infcvgaux1i 15569 4sqlem1 16649 sscpwex 17527 cssval 20887 topnex 22146 islocfin 22668 hauspwpwf1 23138 itg2lcl 24892 2sqlem7 26572 isismt 26895 nmcexi 30388 opabssi 30953 lsmsnorb 31579 dispcmp 31809 cnre2csqima 31861 mppspstlem 33533 scutf 34006 colinearex 34362 itg2addnclem 35828 itg2addnc 35831 eldiophb 40579 |
Copyright terms: Public domain | W3C validator |