| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 4030 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2865 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3995 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 |
| This theorem is referenced by: ssab2 4042 intab 4942 opabss 5171 relopabiALT 5786 exse2 7893 opiota 8038 mpoexw 8057 fsplitfpar 8097 tfrlem8 8352 fiprc 9016 fival 9363 hartogslem1 9495 dmttrcl 9674 rnttrcl 9675 tz9.12lem1 9740 rankuni 9816 scott0 9839 r0weon 9965 alephval3 10063 aceq3lem 10073 dfac5lem4 10079 dfac5lem4OLD 10081 dfac2b 10084 cff 10201 cfsuc 10210 cff1 10211 cflim2 10216 cfss 10218 axdc3lem 10403 axdclem 10472 gruina 10771 nqpr 10967 infcvgaux1i 15823 4sqlem1 16919 sscpwex 17777 cssval 21591 topnex 22883 islocfin 23404 hauspwpwf1 23874 itg2lcl 25628 2sqlem7 27335 scutf 27724 isismt 28461 nmcexi 31955 opabssi 32541 lsmsnorb 33362 dispcmp 33849 cnre2csqima 33901 mppspstlem 35558 colinearex 36048 itg2addnclem 37665 itg2addnc 37668 eldiophb 42745 |
| Copyright terms: Public domain | W3C validator |