| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssi | Structured version Visualization version GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 4013 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2868 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3978 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 |
| This theorem is referenced by: ssab2 4026 intab 4926 opabss 5153 relopabiALT 5762 exse2 7847 opiota 7991 mpoexw 8010 fsplitfpar 8048 tfrlem8 8303 fiprc 8966 fival 9296 hartogslem1 9428 dmttrcl 9611 rnttrcl 9612 tz9.12lem1 9680 rankuni 9756 scott0 9779 r0weon 9903 alephval3 10001 aceq3lem 10011 dfac5lem4 10017 dfac5lem4OLD 10019 dfac2b 10022 cff 10139 cfsuc 10148 cff1 10149 cflim2 10154 cfss 10156 axdc3lem 10341 axdclem 10410 gruina 10709 nqpr 10905 infcvgaux1i 15764 4sqlem1 16860 sscpwex 17722 cssval 21619 topnex 22911 islocfin 23432 hauspwpwf1 23902 itg2lcl 25655 2sqlem7 27362 scutf 27753 isismt 28512 nmcexi 32006 opabssi 32596 lsmsnorb 33356 dispcmp 33872 cnre2csqima 33924 mppspstlem 35615 colinearex 36104 itg2addnclem 37721 itg2addnc 37724 eldiophb 42860 |
| Copyright terms: Public domain | W3C validator |